• Title/Summary/Keyword: a number plate recognition

Search Result 73, Processing Time 0.023 seconds

Recognition of Car License Plate using Kohonen Algorithm

  • Lim, Eun-Kyoung;Yang, Hwang-Kyu;Kwang Baek kim
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.785-788
    • /
    • 2000
  • The recognition system of a car plate is largely classified as the extraction and recognition of number plate. In this paper, we extract the number plate domain by using a thresholding method as a preprocess step. The computation of the density in a given mask provides a clue of a candidate domain whose density ratio corresponds to the properties of the number plate obtained in the best condition. The contour of the number plate for the recognition of the texts of number plate is extracted by operating Kohonen Algorithm in a localized region. The algorithm reduces noises around the contour. The recognition system with the density computation and Kohonen Algorithm shows a high performance in the real system in connection with a car number plate.

  • PDF

Development of an image processing algorithm for the recognition of car types and number plates (차종, 번호판 위치 및 자동차 번호판 인식을 위한 영상처리 알고리즘개발)

  • 김희식;이평원;김영재
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1718-1721
    • /
    • 1997
  • An image processing algorithm is developed in order to recognize the type of cars, the position of a number plate and the characters on the plate. to recognize the type of cars, comparison of two images is used. One has a car image, the other is just a background image without car. After that recognition, a vertical line filter is used to find the location of the plate. Finally the simularity mehod is used to recognize the numbers on plates.

  • PDF

A Licence Plate Recognition System using Hadoop (하둡을 이용한 번호판 인식 시스템)

  • Park, Jin-Woo;Park, Ho-Hyun
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.142-145
    • /
    • 2017
  • Currently, a trend in image processing is high-quality and high-resolution. The size and amount of image data are increasing exponentially because of the development of information and communication technology. Thus, license plate recognition with a single processor cannot handle the increasing data. This paper proposes a number plate recognition system using a distributed processing framework, Hadoop. Using SequenceFile format in Hadoop, each mapper performs a license plate recognition with a number of image data in a data block Experimental results show that license plate recognition performance with 16 data nodes accomplishes speedup of maximum 14.7 times comparing with one data node. In large dataset, the recognition performance is robust even if the number of data nodes increases gradually.

A Study on improving the performance of License Plate Recognition (자동차 번호판 인식 성능 향상에 관한 연구)

  • Eom, Gi-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.203-207
    • /
    • 2006
  • Nowadays, Cars are continuing to grow at an alarming rate but they also cause many problems such as traffic accident, pollutions and so on. One of the most effective methods that prevent traffic accidents is the use of traffic monitoring systems, which are already widely used in many countries. The monitoring system is beginning to be used in domestic recently. An intelligent monitoring system generates photo images of cars as well as identifies cars by recognizing their plates. That is, the system automatically recognizes characters of vehicle plates. An automatic vehicle plate recognition consists of two main module: a vehicle plate locating module and a vehicle plate number identification module. We study for a vehicle plate number identification module in this paper. We use image preprocessing, feature extraction, multi-layer neural networks for recognizing characters of vehicle plates and we present a feature-comparison method for improving the performance of vehicle plate number identification module. In the experiment on identifying vehicle plate number, 300 images taken from various scenes were used. Of which, 8 images have been failed to identify vehicle plate number and the overall rate of success for our vehicle plate recognition algorithm is 98%.

  • PDF

도로영상에서 차량 특성 곡선을 이용한 차종 구분 알고리즘 개발

  • 김희식;이호재;이평원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.423-426
    • /
    • 1995
  • An image processing algorithm is developed in order to recognize the type of cars, the position of a number plate and the characters on the plate. To recognize the type af cars, comparison of two images is used. One has a car image, the other is just a background image without car. After that recognition, a vertical line filter is used to find the location of the plate. Finally the similarity method is used to recognize the numbers on the plates.

  • PDF

A Study on the Vehicle License Plate Recognition Using Convolutional Neural Networks(CNNs) (CNN 기법을 이용한 자동차 번호판 인식법 연구)

  • Nkundwanayo Seth;Gyoo-Soo Chae
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.7-11
    • /
    • 2023
  • In this study, we presented a method to recognize vehicle license plates using CNN techniques. A vehicle plate is normally used for the official identification purposes by the authorities. Most regular Optical Character Recognition (OCR) techniques perform well in recognizing printed characters on documents but cannot make out the registration number on the number plates. Besides, the existing approaches to plate number detection require that the vehicle is stationary and not in motion. To address these challenges to number plate detection we make the following contributions. We create a database of captured vehicle number plate's images and recognize the number plate character using Convolutional Neural Networks. The results of this study can be usefully used in parking management systems and enforcement cameras.

Number Plate Detection with a Multi-Convolutional Neural Network Approach with Optical Character Recognition for Mobile Devices

  • Gerber, Christian;Chung, Mokdong
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.100-108
    • /
    • 2016
  • In this paper, we propose a method to achieve improved number plate detection for mobile devices by applying a multiple convolutional neural network (CNN) approach. First, we processed supervised CNN-verified car detection and then we applied the detected car regions to the next supervised CNN-verifier for number plate detection. In the final step, the detected number plate regions were verified through optical character recognition by another CNN-verifier. Since mobile devices are limited in computation power, we are proposing a fast method to recognize number plates. We expect for it to be used in the field of intelligent transportation systems.

Vehicle License Plate Text Recognition Algorithm Using Object Detection and Handwritten Hangul Recognition Algorithm (객체 검출과 한글 손글씨 인식 알고리즘을 이용한 차량 번호판 문자 추출 알고리즘)

  • Na, Min Won;Choi, Ha Na;Park, Yun Young
    • Journal of Information Technology Services
    • /
    • v.20 no.6
    • /
    • pp.97-105
    • /
    • 2021
  • Recently, with the development of IT technology, unmanned systems are being introduced in many industrial fields, and one of the most important factors for introducing unmanned systems in the automobile field is vehicle licence plate recognition(VLPR). The existing VLPR algorithms are configured to use image processing for a specific type of license plate to divide individual areas of a character within the plate to recognize each character. However, as the number of Korean vehicle license plates increases, the law is amended, there are old-fashioned license plates, new license plates, and different types of plates are used for each type of vehicle. Therefore, it is necessary to update the VLPR system every time, which incurs costs. In this paper, we use an object detection algorithm to detect character regardless of the format of the vehicle license plate, and apply a handwritten Hangul recognition(HHR) algorithm to enhance the recognition accuracy of a single Hangul character, which is called a Hangul unit. Since Hangul unit is recognized by combining initial consonant, medial vowel and final consonant, so it is possible to use other Hangul units in addition to the 40 Hangul units used for the Korean vehicle license plate.

Number Plate Detection System by Using the Night Images

  • Yoshimori, S.;Mitsukura, Y.;Fukumi, M.;Akamatsu, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1249-1253
    • /
    • 2003
  • License plate recognition is very important in an automobile society. This is because, since plate detection accuracy has large influence on subsequent number recognition, it is very important. However, it is very difficult to do it, because a background and a body color of cars are similar to that of the license plate. In this paper, we propose a new thresholds determination method in the various background by using the real-coded genetic algorithm (RGA). By using RGA, the most likely plate colors are decided under various lighting conditions. First, the average brightness Y values of images are calculated. Next, relationship between the Y value and the most likely plate color thresholds (upper and lower bounds)are obtained by RGA. The relationship between thresholds decided from RGA and brightness average is aproximate by using the recursive least squares (RLS) algorithm. In the case of plate detection, thresholds are decided from these functions.

  • PDF

RBFNNs-based Recognition System of Vehicle License Plate Using Distortion Correction and Local Binarization (왜곡 보정과 지역 이진화를 이용한 RBFNNs 기반 차량 번호판 인식 시스템)

  • Kim, Sun-Hwan;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1531-1540
    • /
    • 2016
  • In this paper, we propose vehicle license plate recognition system based on Radial Basis Function Neural Networks (RBFNNs) with the use of local binarization functions and canny edge algorithm. In order to detect the area of license plate and also recognize license plate numbers, binary images are generated by using local binarization methods, which consider local brightness, and canny edge detection. The generated binary images provide information related to the size and the position of license plate. Additionally, image warping is used to compensate the distortion of images obtained from the side. After extracting license plate numbers, the dimensionality of number images is reduced through Principal Component Analysis (PCA) and is used as input variables to RBFNNs. Particle Swarm Optimization (PSO) algorithm is used to optimize a number of essential parameters needed to improve the accuracy of RBFNNs. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. Image data sets are obtained by changing the distance between stationary vehicle and camera and then used to evaluate the performance of the proposed system.