• Title/Summary/Keyword: a neural network

Search Result 9,871, Processing Time 0.037 seconds

A Proposal of Remaining Useful Life Prediction Model for Turbofan Engine based on k-Nearest Neighbor (k-NN을 활용한 터보팬 엔진의 잔여 유효 수명 예측 모델 제안)

  • Kim, Jung-Tae;Seo, Yang-Woo;Lee, Seung-Sang;Kim, So-Jung;Kim, Yong-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.611-620
    • /
    • 2021
  • The maintenance industry is mainly progressing based on condition-based maintenance after corrective maintenance and preventive maintenance. In condition-based maintenance, maintenance is performed at the optimum time based on the condition of equipment. In order to find the optimal maintenance point, it is important to accurately understand the condition of the equipment, especially the remaining useful life. Thus, using simulation data (C-MAPSS), a prediction model is proposed to predict the remaining useful life of a turbofan engine. For the modeling process, a C-MAPSS dataset was preprocessed, transformed, and predicted. Data pre-processing was performed through piecewise RUL, moving average filters, and standardization. The remaining useful life was predicted using principal component analysis and the k-NN method. In order to derive the optimal performance, the number of principal components and the number of neighbor data for the k-NN method were determined through 5-fold cross validation. The validity of the prediction results was analyzed through a scoring function while considering the usefulness of prior prediction and the incompatibility of post prediction. In addition, the usefulness of the RUL prediction model was proven through comparison with the prediction performance of other neural network-based algorithms.

Prediction of water level in a tidal river using a deep-learning based LSTM model (딥러닝 기반 LSTM 모형을 이용한 감조하천 수위 예측)

  • Jung, Sungho;Cho, Hyoseob;Kim, Jeongyup;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1207-1216
    • /
    • 2018
  • Discharge or water level predictions at tidally affected river reaches are currently still a great challenge in hydrological practices. This research aims to predict water level of the tide dominated site, Jamsu bridge in the Han River downstream. Physics-based hydrodynamic approaches are sometimes not applicable for water level prediction in such a tidal river due to uncertainty sources like rainfall forecasting data. In this study, TensorFlow deep learning framework was used to build a deep neural network based LSTM model and its applications. The LSTM model was trained based on 3 data sets having 10-min temporal resolution: Paldang dam release, Jamsu bridge water level, predicted tidal level for 6 years (2011~2016) and then predict the water level time series given the six lead times: 1, 3, 6, 9, 12, 24 hours. The optimal hyper-parameters of LSTM model were set up as follows: 6 hidden layers number, 0.01 learning rate, 3000 iterations. In addition, we changed the key parameter of LSTM model, sequence length, ranging from 1 to 6 hours to test its affect to prediction results. The LSTM model with the 1 hr sequence length led to the best performing prediction results for the all cases. In particular, it resulted in very accurate prediction: RMSE (0.065 cm) and NSE (0.99) for the 1 hr lead time prediction case. However, as the lead time became longer, the RMSE increased from 0.08 m (1 hr lead time) to 0.28 m (24 hrs lead time) and the NSE decreased from 0.99 (1 hr lead time) to 0.74 (24 hrs lead time), respectively.

A Study on the Development of Readmission Predictive Model (재입원 예측 모형 개발에 관한 연구)

  • Cho, Yun-Jung;Kim, Yoo-Mi;Han, Seung-Woo;Choe, Jun-Yeong;Baek, Seol-Gyeong;Kang, Sung-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.435-447
    • /
    • 2019
  • In order to prevent unnecessary re-admission, it is necessary to intensively manage the groups with high probability of re-admission. For this, it is necessary to develop a re-admission prediction model. Two - year discharge summary data of one university hospital were collected from 2016 to 2017 to develop a predictive model of re-admission. In this case, the re-admitted patients were defined as those who were discharged more than once during the study period. We conducted descriptive statistics and crosstab analysis to identify the characteristics of rehospitalized patients. The re-admission prediction model was developed using logistic regression, neural network, and decision tree. AUC (Area Under Curve) was used for model evaluation. The logistic regression model was selected as the final re-admission predictive model because the AUC was the best at 0.81. The main variables affecting the selected rehospitalization in the logistic regression model were Residental regions, Age, CCS, Charlson Index Score, Discharge Dept., Via ER, LOS, Operation, Sex, Total payment, and Insurance. The model developed in this study was limited to generalization because it was two years data of one hospital. It is necessary to develop a model that can collect and generalize long-term data from various hospitals in the future. Furthermore, it is necessary to develop a model that can predict the re-admission that was not planned.

Effective Utilization of Domain Knowledge for Relational Reinforcement Learning (관계형 강화 학습을 위한 도메인 지식의 효과적인 활용)

  • Kang, MinKyo;Kim, InCheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • Recently, reinforcement learning combined with deep neural network technology has achieved remarkable success in various fields such as board games such as Go and chess, computer games such as Atari and StartCraft, and robot object manipulation tasks. However, such deep reinforcement learning describes states, actions, and policies in vector representation. Therefore, the existing deep reinforcement learning has some limitations in generality and interpretability of the learned policy, and it is difficult to effectively incorporate domain knowledge into policy learning. On the other hand, dNL-RRL, a new relational reinforcement learning framework proposed to solve these problems, uses a kind of vector representation for sensor input data and lower-level motion control as in the existing deep reinforcement learning. However, for states, actions, and learned policies, It uses a relational representation with logic predicates and rules. In this paper, we present dNL-RRL-based policy learning for transportation mobile robots in a manufacturing environment. In particular, this study proposes a effective method to utilize the prior domain knowledge of human experts to improve the efficiency of relational reinforcement learning. Through various experiments, we demonstrate the performance improvement of the relational reinforcement learning by using domain knowledge as proposed in this paper.

A Ship-Wake Joint Detection Using Sentinel-2 Imagery

  • Woojin, Jeon;Donghyun, Jin;Noh-hun, Seong;Daeseong, Jung;Suyoung, Sim;Jongho, Woo;Yugyeong, Byeon;Nayeon, Kim;Kyung-Soo, Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.77-86
    • /
    • 2023
  • Ship detection is widely used in areas such as maritime security, maritime traffic, fisheries management, illegal fishing, and border control, and ship detection is important for rapid response and damage minimization as ship accident rates increase due to recent increases in international maritime traffic. Currently, according to a number of global and national regulations, ships must be equipped with automatic identification system (AIS), which provide information such as the location and speed of the ship periodically at regular intervals. However, most small vessels (less than 300 tons) are not obligated to install the transponder and may not be transmitted intentionally or accidentally. There is even a case of misuse of the ship'slocation information. Therefore, in this study, ship detection was performed using high-resolution optical satellite images that can periodically remotely detect a wide range and detectsmallships. However, optical images can cause false-alarm due to noise on the surface of the sea, such as waves, or factors indicating ship-like brightness, such as clouds and wakes. So, it is important to remove these factors to improve the accuracy of ship detection. In this study, false alarm wasreduced, and the accuracy ofship detection wasimproved by removing wake.As a ship detection method, ship detection was performed using machine learning-based random forest (RF), and convolutional neural network (CNN) techniquesthat have been widely used in object detection fieldsrecently, and ship detection results by the model were compared and analyzed. In addition, in this study, the results of RF and CNN were combined to improve the phenomenon of ship disconnection and the phenomenon of small detection. The ship detection results of thisstudy are significant in that they improved the limitations of each model while maintaining accuracy. In addition, if satellite images with improved spatial resolution are utilized in the future, it is expected that ship and wake simultaneous detection with higher accuracy will be performed.

Apartment Price Prediction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 아파트 실거래가 예측)

  • Hakhyun Kim;Hwankyu Yoo;Hayoung Oh
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-76
    • /
    • 2023
  • Since the COVID-19 era, the rise in apartment prices has been unconventional. In this uncertain real estate market, price prediction research is very important. In this paper, a model is created to predict the actual transaction price of future apartments after building a vast data set of 870,000 from 2015 to 2020 through data collection and crawling on various real estate sites and collecting as many variables as possible. This study first solved the multicollinearity problem by removing and combining variables. After that, a total of five variable selection algorithms were used to extract meaningful independent variables, such as Forward Selection, Backward Elimination, Stepwise Selection, L1 Regulation, and Principal Component Analysis(PCA). In addition, a total of four machine learning and deep learning algorithms were used for deep neural network(DNN), XGBoost, CatBoost, and Linear Regression to learn the model after hyperparameter optimization and compare predictive power between models. In the additional experiment, the experiment was conducted while changing the number of nodes and layers of the DNN to find the most appropriate number of nodes and layers. In conclusion, as a model with the best performance, the actual transaction price of apartments in 2021 was predicted and compared with the actual data in 2021. Through this, I am confident that machine learning and deep learning will help investors make the right decisions when purchasing homes in various economic situations.

Predicting the Number of Confirmed COVID-19 Cases Using Deep Learning Models with Search Term Frequency Data (검색어 빈도 데이터를 반영한 코로나 19 확진자수 예측 딥러닝 모델)

  • Sungwook Jung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.387-398
    • /
    • 2023
  • The COVID-19 outbreak has significantly impacted human lifestyles and patterns. It was recommended to avoid face-to-face contact and over-crowded indoor places as much as possible as COVID-19 spreads through air, as well as through droplets or aerosols. Therefore, if a person who has contacted a COVID-19 patient or was at the place where the COVID-19 patient occurred is concerned that he/she may have been infected with COVID-19, it can be fully expected that he/she will search for COVID-19 symptoms on Google. In this study, an exploratory data analysis using deep learning models(DNN & LSTM) was conducted to see if we could predict the number of confirmed COVID-19 cases by summoning Google Trends, which played a major role in surveillance and management of influenza, again and combining it with data on the number of confirmed COVID-19 cases. In particular, search term frequency data used in this study are available publicly and do not invade privacy. When the deep neural network model was applied, Seoul (9.6 million) with the largest population in South Korea and Busan (3.4 million) with the second largest population recorded lower error rates when forecasting including search term frequency data. These analysis results demonstrate that search term frequency data plays an important role in cities with a population above a certain size. We also hope that these predictions can be used as evidentiary materials to decide policies, such as the deregulation or implementation of stronger preventive measures.

Development of Stability Evaluation Algorithm for C.I.P. Retaining Walls During Excavation (가시설 벽체(C.I.P.)의 굴착중 안정성 평가 알고리즘 개발)

  • Lee, Dong-Gun;Yu, Jeong-Yeon;Choi, Ji-Yeol;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.13-24
    • /
    • 2023
  • To investigate the stability of temporary retaining walls during excavation, it is essential to develop reverse analysis technologies capable of precisely evaluating the properties of the ground and a learning model that can assess stability by analyzing real-time data. In this study, we targeted excavation sites where the C.I.P method was applied. We developed a Deep Neural Network (DNN) model capable of evaluating the stability of the retaining wall, and estimated the physical properties of the ground being excavated using a Differential Evolution Algorithm. We performed reverse analysis on a model composed of a two-layer ground for the applicability analysis of the Differential Evolution Algorithm. The results from this analysis allowed us to predict the properties of the ground, such as the elastic modulus, cohesion, and internal friction angle, with an accuracy of 97%. We analyzed 30,000 cases to construct the training data for the DNN model. We proposed stability evaluation grades for each assessment factor, including anchor axial force, uneven subsidence, wall displacement, and structural stability of the wall, and trained the data based on these factors. The application analysis of the trained DNN model showed that the model could predict the stability of the retaining wall with an average accuracy of over 94%, considering factors such as the axial force of the anchor, uneven subsidence, displacement of the wall, and structural stability of the wall.

Estimating Gastrointestinal Transition Location Using CNN-based Gastrointestinal Landmark Classifier (CNN 기반 위장관 랜드마크 분류기를 이용한 위장관 교차점 추정)

  • Jang, Hyeon Woong;Lim, Chang Nam;Park, Ye-Suel;Lee, Gwang Jae;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.3
    • /
    • pp.101-108
    • /
    • 2020
  • Since the performance of deep learning techniques has recently been proven in the field of image processing, there are many attempts to perform classification, analysis, and detection of images using such techniques in various fields. Among them, the expectation of medical image analysis software, which can serve as a medical diagnostic assistant, is increasing. In this study, we are attention to the capsule endoscope image, which has a large data set and takes a long time to judge. The purpose of this paper is to distinguish the gastrointestinal landmarks and to estimate the gastrointestinal transition location that are common to all patients in the judging of capsule endoscopy and take a lot of time. To do this, we designed CNN-based Classifier that can identify gastrointestinal landmarks, and used it to estimate the gastrointestinal transition location by filtering the results. Then, we estimate gastrointestinal transition location about seven of eight patients entered the suspected gastrointestinal transition area. In the case of change from the stomach to the small intestine(pylorus), and change from the small intestine to the large intestine(ileocecal valve), we can check all eight patients were found to be in the suspected gastrointestinal transition area. we can found suspected gastrointestinal transition area in the range of 100 frames, and if the reader plays images at 10 frames per second, the gastrointestinal transition could be found in 10 seconds.

Development of DL-MCS Hybrid Expert System for Automatic Estimation of Apartment Remodeling (공동주택 리모델링 자동견적을 위한 DL-MCS Hybrid Expert System 개발)

  • Kim, Jun;Cha, Heesung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.113-124
    • /
    • 2020
  • Social movements to improve the performance of buildings through remodeling of aging apartment houses are being captured. To this end, the remodeling construction cost analysis, structural analysis, and political institutional review have been conducted to suggest ways to activate the remodeling. However, although the method of analyzing construction cost for remodeling apartment houses is currently being proposed for research purposes, there are limitations in practical application possibilities. Specifically, In order to be used practically, it is applicable to cases that have already been completed or in progress, but cases that will occur in the future are also used for construction cost analysis, so the sustainability of the analysis method is lacking. For the purpose of this, we would like to suggest an automated estimating method. For the sustainability of construction cost estimates, Deep-Learning was introduced in the estimating procedure. Specifically, a method for automatically finding the relationship between design elements, work types, and cost increase factors that can occur in apartment remodeling was presented. In addition, Monte Carlo Simulation was included in the estimation procedure to compensate for the lack of uncertainty, which is the inherent limitation of the Deep Learning-based estimation. In order to present higher accuracy as cases are accumulated, a method of calculating higher accuracy by comparing the estimate result with the existing accumulated data was also suggested. In order to validate the sustainability of the automated estimates proposed in this study, 13 cases of learning procedures and an additional 2 cases of cumulative procedures were performed. As a result, a new construction cost estimating procedure was automatically presented that reflects the characteristics of the two additional projects. In this study, the method of estimate estimate was used using 15 cases, If the cases are accumulated and reflected, the effect of this study is expected to increase.