• Title/Summary/Keyword: a natural-slope

Search Result 631, Processing Time 0.024 seconds

A Study on the Research Topics and Trends in Korean Journal of Remote Sensing: Focusing on Natural & Environmental Disasters (토픽모델링을 이용한 대한원격탐사학회지의 연구주제 분류 및 연구동향 분석: 자연·환경재해 분야를 중심으로)

  • Kim, Taeyong;Park, Hyemin;Heo, Junyong;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1869-1880
    • /
    • 2021
  • Korean Journal of Remote Sensing (KJRS), leading the field of remote sensing and GIS in South Korea for over 37 years, has published interdisciplinary research papers. In this study, we performed the topic modeling based on Latent Dirichlet Allocation (LDA), a probabilistic generative model, to identify the research topics and trends using 1) the whole articles, and 2) specific articles related to natural and environmental disasters published in KJRS by analyzing titles, keywords, and abstracts. The results of LDA showed that 4 topics('Polar', 'Hydrosphere', 'Geosphere', and 'Atmosphere') were identified in the whole articles and the topic of 'Polar' was dominant among them (linear slope=3.51 × 10-3, p<0.05) over time. For the specific articles related to natural and environmental disasters, the optimal number of topics were 7 ('Marine pollution', 'Air pollution', 'Volcano', 'Wildfire', 'Flood', 'Drought', and 'Heavy rain') and the topic of 'Air pollution' was dominant (linear slope=2.61 × 10-3, p<0.05) over time. The results from this study provide the history and insight into natural and environmental disasters in KRJS with multidisciplinary researchers.

A new analytical approach to estimate the seismic tensile force of geosynthetic reinforcement respect to the uniform surcharge of slopes

  • Motlagh, Ali Tafreshi;Ghanbari, Ali;Maedeh, Pouyan Abbasi;Wu, Wei
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.687-699
    • /
    • 2018
  • This paper investigates the pseudo-static analysis of reinforced slopes with geosynthetics under the influence of the uniform surcharge to evaluate the maximum tensile force of reinforcements. The analytical approach has basically been used to develop the new practical procedure to estimate both tensile force and its distribution in the height of the slope. The base of developed relationships has been adapted from the conventional horizontal slice method. The limit equilibrium framework and the assumptions of log-spiral failure surface have directly been used for proposed analytical approach. A new analytical approach considering a single layer of non-cohesion soil and the influence of uniform surcharge has been extracted from the 5n equation and 5n unknown parameters. Results of the proposed method illustrated that the location of the surcharge, amount of internal friction and the seismic coefficient have the remarkable effect on the tensile force of reinforcement and might be 2 times increasing on it. Furthermore, outcomes show that the amount of tensile force has directly until 2 times related to the amount of slope angle and its height range. Likewise, it is observed that the highest value of the tensile force in case of slope degree more than 60-degree is observed on the lower layers. While in case of less degree the highest amount of tensile force has been reported on the middle layers and extremely depended to the seismic coefficient. Hence, it has been shown that the tensile force has increased more than 6 times compared with the static condition. The obtained results of the developed procedure were compared with the outcomes of the previous research. A good agreement has been illustrated between the amount results of developed relationships and outcomes of previous research. Maximum 20 and 25 percent difference have been reported in cases of static and seismic condition respectively.

Development of a Prototype System for Slope Failure Monitoring Based on USN Technology (USN 기술을 이용한 사면붕괴모니터링 시범시스템 개발)

  • Han, Jae-Goo;Kim, Kyoon-Tai
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.316-321
    • /
    • 2007
  • The casualties due to slope failures such as landslide, rock fall, debris flow etc. are about 24% in total casualties caused by natural disasters for the last 10 years. And these slope failures are focused in the season in which typhoon and torrential rain take place. Not much attention, however, have been put into landslide mitigation research. Meanwhile, USN(Ubiquitous Sensor Network) forms the self-organization network, and transfers the information among sensor nodes that have computing technology ability. Accordingly, USN is embossed a social point technology. The objective of this paper is to develop a prototype system for slope failure monitoring using USN technology. For this we develop module that collects and change slope movement data measured by two tiltermeter and a tension wire, store transferred data in database. Also we develop application program that can easily analyze the data. We apply the prototype system to a test site at KICT for testing and analyzing the system's performance.

  • PDF

Slope of Grain and Twist of Major Softwood Species (주요(主要) 침엽수(針葉樹)의 섬유(纖維) 경사도(傾斜度)와 비틀림)

  • Kang, Sun-Koo;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.45-52
    • /
    • 1993
  • Surveyed results on the slope of grain and the twist of sawn lumber of Pinus koraiensis, Larix leptolepis, and Pinus densiflora were summarized as follows: 1. The slope of grain of Pinus koraiensis has a Z-grain in the stem axis. The slope of grain was found to be the lowest at near to the pith and then constantly increased. At the height of 0.2m from the base of stem. a cross section of 35 annual rings was found to have a repeatedly increasing and decreasing slope of grain and then constantly decreased. At the height of 1.2m to 7.2m from the base of stem, the slope of grain increased conspicuously until the 10th annual ring, after which it increased near to the bark with repeatedly increasing and decreasing trends. 2. Pinus densiflora has a S-grain in the stem axis. The lowest slope of grain was found at near to the pith, and the highest in the 10 to 35 annual rings from the pith. 3. Larix leptolepis has a S-grain. At the height of 3.2m from the base of stem, the big fluctuation of the slope of grain was found without any particular trend. 4. The slope of grain and the twist between natural and reforested timber of Pinus koraiensis were found to be almost the same trend in viewpoint of the annual ring. The maximum slope of grain of imported Siberian timber of Pinus koraiensis was found at the 10 annual rings, which was quite similar to that of native species in Korea, but the big difference of the twist was found at 140 annual rings. 5. The twist was little at the mature wood of reforested Pinus koraiensis and Siberians and the duplicated part of mature and juvenile woods of those. On the contrary, the twist was great at the duplicated part of mature and juvenile woods of Pinus koraiensis. 6. The twist of Larix leptolepis showed the S-direction which coincided with that of slope of grain. The twist was greatest at the part of juvenile wood and little at the duplicated part of mature and juvenile woods, and little difference of twist was found between mature and juvenile woods. 7. Siberian larix having a minimum slope of grain showed the lowest twist, and the twist at the duplicated part of mature and juvenile woods showed a middle level of both mature and juvenile woods' portions.

  • PDF

Estimation of Saturation Depth by Reflecting Water-redistribution Phenomena at a Natural Slope (수분 재분포를 고려한 강우 침투 시 자연 사면에서의 포화깊이 산정)

  • Kim, Woong-Ku;Chang, Pyoung-Wuck;Cha, Kyung-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.71-79
    • /
    • 2006
  • In Korea, most landslides occurred during the rainy season and had a shallow failure plane parallel to the slope. For these types of rainfall-induced failures, the most important factor triggering slope unstability is decrease in the matric suction of unsaturated soils with increasing saturation depth by rainfall infiltration. The saturation depth was readily estimated using modified Green-Ampt model proposed by Chu et al. (Chu Model) at present. But Chu Model involves some problems for application, because water-redistribution phenomena were not effected. So the modified Chu Model (MCGAM) which reflect water redistribution phono mens was developed. The results showed that the MCGAM had a better agreement with measured volumetric water contents than existing Chu Model.

Belowground Carbon Allocation of Natural Quercus mongolica Forests Estimated from Litterfall and Soil Respiration Measurements (Litterfall과 토양호흡 측정에 의한 신갈나무 천연림의 지하부 탄소 분배)

  • Yi Myong-Jong;Son Yowhan;Jin Hyun-O;Park In-Hyeop;Kim Dong-Yeop;Kim Yong-Suk;Shin Dong-Min
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.3
    • /
    • pp.227-234
    • /
    • 2005
  • From published data of mature forests worldwide, Raich and Nadelhoffer suggested that total belowground carbon allocation (TBCA) could be estimated from the difference between annual rates of soil respiration and aboveground litterfall. Here we analyze new measurements of IRGA-based soil respiration and litterfall of natural mature oak forests dominated by Quercus mongolica in Korea. Rates of in situ soil respiration and aboveground litter production are highly and positively correlated. Our results disagree with the Raich and Nadelhoffer model far world forests. A regression analysis of the data from Q. mongolica forests produced the following relationship: annual soil respiration : 141 + 2.08 ${\times}$ annual litterfall. The least squares regression line has a more gentle slope (2.08) than the slope (2.92) described by Raich and Nedelhoffer for mature forests worldwide. The regression slope of our study indicates that, on average, soil respiration is about two times the aboveground litterfall-C, which further implies that TBCA is similar with annual aboveground litterfall-C at natural Q. mongolica forests in Korea. The non-zero Y-intercept (141) of the regression indicates that TBCA may be greater than litterfall-C where litterfall rate are relativery low. Over a gradient of litterfall-C ranging from 200-370 g C $m^{-2}yr^{-l}$, TBCA increased from 350-530 g C $m^{-2}yr^{-l}$.

Slopes Risk Assessment Techniques through Pattern Classification (패턴분류를 통한 산지사면의 위험도 평가 기법)

  • Kim, Min-Seub;Kim, Jin-Young
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.189-199
    • /
    • 2015
  • Our country's leading granite weathered soil of the ground slope failures that occur in cutting slope most cases, it does not require in-depth to the shear strength most of the surface layer is affected by weathering (1~2 m) at a shallow depth close to the ground, it is important to identify the reliability. Based on the result obtained in actual field investigation, the field slope type was classified by each type of wedge slope, Infinite slope, finite slope -I and finite slope -II, and the slope stability was examined respectively. In addition, using the numerical analysis results, the relationship between the slope inclination angle and safety factor was analyzed and it tried to offer basic data to which the stability in the field slope was able to be estimated by analyzing the safety factor change of the slope according to the slope type. In this study, classified into four types of natural slope, safety factor estimation method by slope types is proposed through the numerical analysis. However, some limit exists in generalizing in this research because it does not test various case studies. Therefore, the case study of a wide range of various sypes to assess the safety of various types slope can be made, accommodate a wide range of field conditions reasonable risk evaluation criteria may be derived.

Analysis of heat leak with the car acceleration for LNG tank of Natural Gas Vehicle (천연가스자동차용 LNG용기에서의 차량가속도와 Heat leak 관계 해석)

  • Minkasheva, Alena;Yu, Young-Min;Park, Yong-Kook;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.11-20
    • /
    • 2006
  • LNG is a valuable fuel since it offers some environmental, energy security and economic benefits over diesel. It could be used mainly in heavy-duty trucks and buses. Car acceleration induces the slope angle of the liquid fuel in the tank. Slope angle changes the surface area wetted by liquid fuel and consequently heat leak to the tank. This research is a result of numerical simulation of the heat leak with the car acceleration to LNG tank. The "Pro-HeatLeak" Fortran program is developed and the verification test of the developed program is done. The difference between numerical results and calculated results from MathCad verification test is less than 0.07 percent. The smallest heat leak is correspond to the case without oscillation. For the high car acceleration the value of heat leak is greater than that for the small acceleration. The difference between maximum and minimum heat leak for 10 gallons of fuel vapor in the tank is about 10 percent.

  • PDF

Residents'prefrences for Rural stream bank materials (농촌 마을내부 소하천의 하안재료에 대한 주민 선호도에 관한 연구)

  • 이춘석;류남형
    • Journal of Korean Society of Rural Planning
    • /
    • v.3 no.2
    • /
    • pp.81-89
    • /
    • 1997
  • Still today, many streams are channelized and embanked in Korea. On the other hand, some urban streams are being restored to their natural shapes by landscape planners. It would be better to improve rural streams in a way that would not require restoration in later days. Then, one important question is what kind of embankments the residents prefer for what reasons. Five simulated photos showing from very natural to artificial embankments were used in surveying 90 residents of three villages. Major findings are ; 1. Residents regard safety(from flooding) is the most critical factor to be considered in selection of stream bank materials. 2. They think ideal materials are natural stones or concrete blocks as they look tidy. Concrete retaining walls or vegetated natural slopes are not regarded good. 3. The most preferred material is concrete retaining wall, and the least preferred is vegetated natural slope. They prefer concrete retaining wall which they do not think an ideal material, because it will make a safe bank. 4. Natural stone bank is most preferred for its apperance, and vegetated natural slpoe is most disliked as it may collapse and as it does not look clean.

  • PDF

Development of a USN-Based Monitoring Scenario for Slope Failures (USN 기반의 사면붕괴 모니터링 시나리오 개발)

  • Kim, Kyoon-Tai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.122-130
    • /
    • 2010
  • Seventy percent of Korea's national territory is covered with mountains, and the land is frequently exposed to typhoons and localized torrential downpours, particularly in July through September. For this reason, slope failure is one of the most frequent types of natural disasters in Korea. To prevent the damage caused by slope failure, the Korean government, academia and industry have strived together to develop and install a wired system for monitoring slope failures. However, conventional wired monitoring systems have been reported to have limitations, such as possible system errors caused by lightning, and the difficulties of restoration and management of the systems. To solve these problems, this research suggests a USN-based monitoring system for slope failures. First, the trend of slope measurement and USN technology was analyzed, and then the current status of damage caused by slope failures in Korea was reviewed. Next, a USN-based monitoring scenario for slope failures, incorporating both USN and slope monitoring technique, was developed. Finally, sensors were decided based on the developed scenario. It is expected that the results of this study will be utilized as fundamental data for the development of monitoring prototype systems for slope failures in the future. The development of the USN-based monitoring system for slope failures and its application in the field will also ultimately contribute to the prevention of slope failures and the minimization of related damage.