• Title/Summary/Keyword: a low-heat additive

Search Result 43, Processing Time 0.036 seconds

Storage Media for the Vehicle Heat Storage System by Using Ba(OH)2·8H2O System (Ba(OH)2·8H2O계 자동차 축열시스템의 저장매체)

  • Kim, H.C.;Song, Y.H.;Lee, C.T.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.722-728
    • /
    • 1997
  • This study was investigated to find storage material of thermal energy storage system for a vehicle with the basic material of $Ba(OH)_2{\cdot}8H_2O$ and to test a feasibility of it. Experiment was investigated usability for long time and state change and thermal property after cycle with $Ba(OH)_2{\cdot}8H_2O$ and misxture doping additive to it. The result of this research indicated the mixture adding $Sr(OH)_2{\cdot}8H_2O$ to $Ba(OH)_2{\cdot}8H_2O$ have high feasibility as storage material for thermal energy storage system. This mixture did not exhibit the state change during 1300 cycles and the rate of decrease of heat realese energy was about 2%, relatively low value.

  • PDF

Size Effect of Hollow Silica Nanoparticles as Paint Additives for Thermal Insulation (단열 페인트 첨가제로써 중공형 실리카 나노입자의 크기에 따른 효과)

  • Kim, Jisue;Kim, Younghun
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.18-23
    • /
    • 2022
  • Using air as an insulator due to its low heat transfer coefficient has been studied and has been widely commercialized to save energy in the field of thermal insulation technology. In this study, we analyzed the heat insulating effect of hollow silica nanoparticles mixed in non-uniform size, and the maximum heat insulating efficiency of these particles given the limited number of particles that can be mixed with a medium such as paint. The hollow silica nanoparticles were synthesized via a sol-gel process using a polystyrene template in order to produce an air layer inside of the particles. After synthesis, the particles were analyzed for their insulation effect according to the size of the air layer by adding 5 wt % of the particles to paint and investigating the thermal insulation performance by a heat transfer experiment. When mixing the particles with white paint, the insulation efficiency was 15% or higher. Furthermore, the large particles, which had a large internal air layer, showed a 5% higher insulation performance than the small particles. By observing the difference in the insulation effect according to the internal air layer size of hollow silica nanoparticles, this research suggests that when using hollow particles as a paint additive, the particle size needs to be considered in order to maximize the air layer in the paint.

Investigation of the Internal Stress Relaxation in FDM 3D Printing : Annealing Conditions (FDM 3D프린팅 어닐링 조건에 따른 내부응력 완화에 관한 연구)

  • Lee, Sun Kon;Kim, Yong Rae;Kim, Su Hyun;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.130-136
    • /
    • 2018
  • In this paper, the effects of different 3D printing parameters including laminated angle and annealing temperature, were observed for their effects on tensile testing. In 3D printing, a filament is heated quickly, extruded, and then cooled rapidly. Because plastic is a poor heat conductor, it heats and cools unevenly causing the rapid heating and cooling to create internal stress within the printed part. Therefore, internal stress can be removed using annealing and to increase tensile strength and strain. During air cooling at annealing temperature $140^{\circ}C$, the strain of laminated angle $45^{\circ}$ specimens tended to increase by 46% while the tensile stress tended to increase by 7.4%. During oven cooling at annealing temperature $140^{\circ}C$, the strain of laminated angle $45^{\circ}$ specimens tended to increase by 34% while the tensile stress tended to increase by 22.2%. In this study, we found "3D printing with annealing" eliminates internal stress and increases the strength and stiffness of a printed piece. On the microstructural level, annealing reforms the crystalline structures to even out the areas of high and low stress, which created fewer weak areas. These results are very useful for making 3D printed products with a mechanical strength that is suitable for applications.

디지털 프린팅 용액 공정 소재 개발 동향

  • O, Seok-Heon;Son, Won-Il;Park, Seon-Jin;Kim, Ui-Deok;Baek, Chung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.19.2-19.2
    • /
    • 2010
  • Printed electronics using printing process has broadened in all respects such as electrics (lighting, batteries, solar cells etc) as well as electronics (OLED, LCD, E-paper, transistor etc). Copper is considered to be a promising alternative to silver for printed electronics, due to very high conductivity at a low price. However, Copper is easily oxidized, and its oxide is non-conductive. This is the highest hurdle for making copper inks, since the heat and humidity that occurs during ink making and printing simply accelerates the oxidation process. A variety of chemical treatments including organic capping agents and metallic coating have been used to slow this oxidation. We have established synthetic conditions of copper nanoparticles (CuNPs) which are resistant to oxidation and average diameter of 20 to 50nm. Specific resistivity should be less than $4\;{\mu}{\Omega}{\cdot}cm$ when sintered at lower temperature than $250^{\circ}C$ to be able to apply to conductive patterns of FPCBs using ink-jet printing. Through this study, the parameters to control average diameter of CuNPs were found to be the introduction of additive agent, the feeding rate of reducing agent, and reaction temperature. The CuNPs with various average diameters (58, 40, 26, 20nm) could be synthesized by controlling these parameters. The dispersed solution of CuNPs with an average size of 20 nm was made with nonpolar solvent containing 3 wt% of binder, and then coated onto glass substrate. After sintering the coated substrates at $250^{\circ}C$ for 30 minutes in nitrogen atmosphere, metallic copper film resulted in a specific resistivity of $4.2\;{\mu}{\Omega}{\cdot}cm$.

  • PDF

Thermal Resistivity of Backfill Materials for Underground Power Cables (지중송전관로 되메움재의 열저항 특성)

  • 김대홍;이대수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.209-220
    • /
    • 2002
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need for cable backfill materials that can maintain a low thermal resistivity (less than 5$0^{\circ}C$-cm/watt) even while they are subjected to high temperatures for prolonged periods. Temperatures greater than 5$0^{\circ}C$ to 6$0^{\circ}C$ may lead to breakdown of cable insulation and thermal nlnaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aiming at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. Tests were called out for DonUing river sand, a relatively uniffrm sand of very high thermal resistivity (5$0^{\circ}C$ -cnuwatt at 10% water content, 26$0^{\circ}C$-cm/watt when dry), and Jinsan granite screenings, and A-2(sand and gravel mixture), E-1 (rubble and granite screenings mixture), a well-graded materials with low thermal resistivity (about 35$^{\circ}C$ -cm/watt when at 10 percent water content, 10$0^{\circ}C$-cm/watt when dry). Based on this research, 3 types of backfill materials were suggested for improved materials with low thermal resistivity.

Development of Backfill Materials for Underground Power Cables Considering Thermal Effect (열특성 효과를 고려한 지중송전관로용 되메움재 개발)

  • Lee Dae-Soo;Kim Dae-Hong;Hong Sung-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.41-52
    • /
    • 2005
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need fur cable backfill materials that can maintain a low thermal resistivity even while subjected to high temperatures for prolonged periods. Temperatures greater than $50^{\circ}C\;to\;60^{\circ}C$ may lead to breakdown of cable insulation and thermal runaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aimed at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. Tests were carried out for Dongrim river sand, a relatively uniform sand of very high thermal resistivity, $50^{\circ}C-cm/watt\;at\;10\%$ water content, $260^{\circ}C-cnuwatt$ when dry, and Jinsan granite screenings, and D-2 (sand and granite screenings mixture), E-1 (rubble and granite screenings mixture), a well-graded materials with low thermal resistivity, about $35^{\circ}C-cm/watt$ when at 10 percent water content, $100^{\circ}C-cm/watt$ when dry. Based on this research, 3 types of backfill materials were suggested for improved materials with low thermal resistivity and the applicability was assessed through field tests.

Development of Environmentally Friendly Backfill Materials for Underground Power Cables Considering Thermal Resistivity (열 저항특성을 고려한 지중송전관로 친환경 되메움재 개발)

  • Kim, Daehong;Oh, Gidae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.13-26
    • /
    • 2011
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need for cable backfill materials to be maintained at a low thermal resistivity during the service period. Temperatures greater than $50^{\circ}C$ to $60^{\circ}C$ may lead to breakdown of cable insulation and thermal runaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aimed at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. The results of Dong-rim river sand (relatively uniform) show that as water content level increases, thermal resistivity tends to decrease, whereas the thermal resistivity on dry condition is very high value($260^{\circ}C-cm/watt$). In addition, other materials(such as Jinsan granite screenings, A-2(sand and gravel mixture), E-1(rubble and granite screenings mixture) and SGFC(sand, gravel, fly-ash and cement mixture)) are well-graded materials with low thermal resistivity($100^{\circ}C-cm/watt$ when dry). Based on this research, 4 types of improved materials were suggested as the environmentally friendly backfill materials with low thermal resistivity.

Fabrication of ZrB2-based Composites for Ultra-high Temperature Materials (초고온 소재용 ZrB2계 복합소재의 제조)

  • Kim, Seong-Won;Chae, Jung-Min;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Nahm, Sahn
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.442-448
    • /
    • 2009
  • $ZrB_2$-based composites are candidate materials for ultra-high temperature materials (UHTMs). $ZrB_2$ has become an indispensable ingredient in UHTMs, due to its high melting temperature, relatively low density, and excellent resistance to thermal shock or oxidation. $ZrB_2$ powders are usually synthesized by solid state reactions such as carbothermal, borothermal, or combined carbothermal reaction. SiC is added to this system in order to enhance the oxidation resistance of $ZrB_2$. In this study, $ZrB_2$?based composites were successfully synthesized and densified through two different processing paths. $ZrB_2$ or $ZrB_2$ 25 vol.%SiC was fully synthesized from oxide starting materials with reducing agents after heat treatment at 1400$^{\circ}C$. Besides, $ZrB_2$?20 vol.%SiC was fully densified with $B_4C$ as a sintering additive after hot pressing at 1900$^{\circ}C$. The synthesis mechanism and the effect of sintering additives on densification of $ZrB_2$ ?SiC composites were also discussed.

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.

Preservation of Strawberries and Cucumbers Packaged by Low density polyethylene film impregnated with antimicmbial agent, Scutellariae baicalensis extract (황금추출물을 함유한 항균성 포장필름을 이용한 딸기와 오이의 저장효과)

  • 정순경;조성환
    • Food Science and Preservation
    • /
    • v.9 no.3
    • /
    • pp.271-276
    • /
    • 2002
  • To develop a wrapping film, which suppresses the microbial decay through the storage and prolongs the selflife of fruits and vegetables, the antimicrobial packaging films were prepared and applied to the preservation of strtwberries and cucumbers. Low density polyethylene(LDPE) film of 50㎛ thickness was faricated with 1% of Scutellariae baicalensis extract. The LDPE film impregnated with Scutellariae baicalensis extract showed antimicrobial activity on the disk test against Bacillus cereus, Escherchia coli and Fusarium sp.. The antimicrobial film changed the color and light transmittance, but did not affect heat shrinkage, mechanical tensile strength and wattability. Strawberries and cucumbers were separately wrapped with packaging films in the state of closely-adhered packaging as well as modified atmosphere packaging(MAP). The wrapped strawberries and cucumbers were stored for 21 days at 5$\^{C}$ and for 40 days at l0$\^{C}$, respectively. For the packaged strawberries and cucumbers at 5$\^{C}$ and 10$\^{C}$, the LDPE film impregnated with Scutellariae baicalensis extract showed the reduced growth of total aerobic bacteria, molds and yeasts and did not give any negative effect on other quality attributes during storage in comparison with conttrol film without any additive.