• Title/Summary/Keyword: a injection

Search Result 12,585, Processing Time 0.039 seconds

Diesel Combustion Strategies Effect on Exhaust Emissions and Hydrocarbon Species (디젤 연소 전략에 따른 배기가스 및 탄화수소 종 분석)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.759-765
    • /
    • 2012
  • This study investigates the effect of diesel combustion strategies on exhaust emissions and hydrocarbon species emissions for a 1.7 L common rail direct injection diesel engine at 1500 rpm and 3.9 bar BMEP. The first strategy is a method to adopt no EGR with a split injection composed of pilot and main injection (split injection). The second is to adopt a moderate EGR rate with main injection only (single-1). The third is to use a high level of EGR and main injection with rail pressure increase, $i.e.$ low-temperature diesel combustion (single-2). Split injection and single-1 showed a renowned phenomenon of a PM-NOx trade-off, whereas single-2 was observed of a PM-NOx trade-off to reduce PM and NOx simultaneously. HC speciation results show that the split injection produced the least amount of HC species, regardless of the carbon number bin, followed by single-1 and single-2. The ratios of methane, acetylene, and CO to THC increased as a combustion A/F ratio is richer due to reduced oxygen content in the vicinity of the combustion zone, thus enhancing pyrolysis.

Performance Characteristics of a Diesel Engine Using the Change of Injection Nozzle Type and Ultrasonic-Energy-Added System(I) (분사노즐 형상 변화와 초음파 에너지 부가장치를 이용한 디젤기관의 성능특성(I))

  • 최두석;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.160-170
    • /
    • 1997
  • The objective of this study is to investigate the atomization characteristics and the performance characteristics of a C. I. engine by using the changes of the injection nozzle type and the ultrasonic-energy-added system. In order to evaluate the effect of ultrasonic energy and of change of injection nozzle type in the performance characte- ristics of a diesel engine, measurements of droplet size of diesel fuel were carried out by using Malvern system. In all types of injection nozzles, SMD of the ultrasonic- energy -added diesel fuel was smaller than that of the conventional diesel fuel and the more injection pressure increased, the more SMD decreased. There was a small increase in SMD with the distance from injection nozzle under all conditions of the injection nozzle types. The minimum SMD was found in the injection nozzle of B type. In the diesel engine test, there were three results about the engine performance. Compared with the injection nozzle of A type, B type had excellent effects in the engine performance. The most excellent effects about the engine performance were obtained in the case of ultrasonic-energy-added diesel fuel. In addition, the torque diagram in the case of ultrasonic-energy-added diesel fuel was more stable and periodical than others.

  • PDF

An Analytical Study on Characteristics of a Diesel Injection System (디젤분사계의 특성에 관한 해석적 연구)

  • 장영준;박호준;전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.63-74
    • /
    • 1989
  • It is well-known that the fuel injection system if a diesel engine has taken a more important place in understanding of diesel combustion process with combustion chamber. But a diesel fuel injection system has an assembly of many complex and intricate problems such as the desired rate of injection, secondary injection and injection pump etc., in addition to the atomization for ignition and combustion, the penetration and diestribution for proper utilization of air. The analysis is carried out by simplifing and modeling the injection phenomena and dividing into three parts comprising of fuel injection pump, high pressure pipe and fuel injection nozzle. The purpose of this paper is to describe an analytical simulation of the injection system and to speed up the work of developing injection systems for new engines. The effects of important injection parameters as predicted by the present model are found to be in good agreement with experiment. It can be seen that there is an optimal pipe diameter for maximum quantity injected.

  • PDF

Self-injection-locked Divide-by-3 Frequency Divider with Improved Locking Range, Phase Noise, and Input Sensitivity

  • Lee, Sanghun;Jang, Sunhwan;Nguyen, Cam;Choi, Dae-Hyun;Kim, Jusung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.492-498
    • /
    • 2017
  • In this paper, we integrate a divide-by-3 injection-locked frequency divider (ILFD) in CMOS technology with a $0.18-{\mu}m$ BiCMOS process. We propose a self-injection technique that utilizes harmonic conversion to improve the locking range, phase-noise, and input sensitivity simultaneously. The proposed self-injection technique consists of an odd-to-even harmonic converter and a feedback amplifier. This technique offers the advantage of increasing the injection efficiency at even harmonics and thus realizes the low-power implementation of an odd-order division ILFD. The measurement results using the proposed self-injection technique show that the locking range is increased by 47.8% and the phase noise is reduced by 14.7 dBc/Hz at 1-MHz offset frequency with the injection power of -12 dBm. The designed divide-by-3 ILFD occupies $0.048mm^2$ with a power consumption of 18.2-mW from a 1.8-V power supply.

The basic study of spray characteristics and optimal fuel injection for high pressure injector in homogeneous charge compression ignition engine (예혼합 압축 착화 엔진용 고압 인젝터의 분무특성과 분사조건 최적화에 관한 기초 연구)

  • Ryu, Jea-Duk;Kim, Hyung-Min;Lee, Ki-Hyung;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • The purpose of this study was to investigate the fuel spray characteristics that made most important at an homogeneous air fuel mixture, in a common rail direct injection type HCCI engine. As a study conducted relation which a back pressure and injection pressure are influenced to air fuel mixture characteristics, we tried to offer date even through we select suitable to a HCCI engine running condition of the fuel injection condition. To accomplish the study, to measure a injection rate of common rail type injector and to visualize and simulate a fuel spray was conducted. From the result of injection rate, a common rail injector was confirmed to appear a initial delay of 0.3msec and a latter period delay of 0.7msec. Therefore, real injection duration was determined by about 0.5msec increasing. From the result of fuel spray, the spray penetration was proportional to 1/4 exponent of atmosphere pressure. An experimental equation was deduced from the spray penetration of spray visualization experiment and the relation of injection duration and penetration was estimated in HCCI engine using an experimental equation.

  • PDF

A Study on Cycle Time and Power Saving Effect of a Hydraulic Hybrid Injection Molding Machine using a Servo Motor (서보모터를 이용한 유압 하이브리드식 사출성형기의 공정시간 및 절전효과에 관한 연구)

  • Yun, Hongsik;Kim, Sungdong
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.15-25
    • /
    • 2020
  • The cycle time and power saving effect of a hydraulic hybrid injection molding machine using a servo motor are considered in this paper. In order to verify control characteristics, such as pressure and speed, experiments were performed with the hydraulic hybrid injection molding machine, clamping force of 110 ton. The power consumption and production cycle time of a conventional hydraulic injection molding machine were measured to compare its performances with the hydraulic hybrid injection molding machine. An injection molding machine with a clamping force of 1300 ton was used as the conventional machine, the hybrid machine was implemented by replacing its induction motors with servo motors. In the remodeled hybrid machine, experiments were performed to investigate how the displacement of the mold clamping pump affects the power consumption and production cycle time. The results showed that the production cycle time of the hybrid injection molding is similar to a conventional hydraulic injection molding machine but with a significant energy saving of about 40%.

Modeling of CNG Direct Injection using Gaseous Sphere Injection Model (기체구 분사 모델을 이용한 CNG 직접분사식 인젝터 분사 수치해석 기법)

  • Choi, Mingi;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the modeling of CNG direct injection using gaseous sphere injection model. Simulation of CNG direct injection does not need break up and evaporation model compared to that of liquid fuel injection. And very fine mesh is needed near the injector nozzle to resolve the inflow boundary. Therefore it takes long computation time for gaseous fuel injection simulation. However, simulation of CNG direct injection could be performed with the coarse mesh using gaseous sphere injection model. This model was integrated in KIVA-3V code and RNG $k-{\varepsilon}$ turbulence model needs to be modified because this model tends to over-predict gas jet diffusion. Furthermore, we preformed experiments of gaseous fuel injection using PLIF (planar laser induced fluorescence)method. Gaseous fuel injection model was validated against experiment data. The simulation results agreed well with the experiment results. Therefore gaseous sphere injection model has the reliability about gaseous fuel direct injection. And this model was predicted well a general tendency of gaseous fuel injection.

Injection Molding Analysis of Battery case considering the Insert Deformation (인서트 변형을 고려한 배터리 케이스 사출 성형 해석)

  • Ahn, Dong-Gyu;Kim, Dea-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1107-1112
    • /
    • 2008
  • The objective of this paper is to investigate into the influence of the injection conditions on the insert deformation and the wall thickness of the injection part using the three-dimensional injection molding analysis. Full three-dimensional insert model was added to the injection molding analysis model to consider the effects of insert deformation during the injection molding process. In order to obtain the optimum injection molding condition with a minimum insert deformation, degree of experiments were utilized. From the results of the analyses, it was shown that the optimum injection condition is injection time of 1.6 sec, injection pressure of 30 MPa and packing time of 15 sec. In addition it was shown that the wall thickness is approached to target thickness when the core deformation is considered in the injection molding analysis.

  • PDF

Simulation Injection Mass with Variable Injection Condition in GDI Engine using AMESim (AMESim을 이용한, GDI 엔진에서 연료의 분사조건 변화에 따른 분사량 변화 예측)

  • Shin, Suk Shin;Song, Jingeun;Park, Jongho
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In case of GDI engine, shape of injected fuel and injection mass are one of the most important factors for good fuel efficiency and power. But it should be too inefficient and difficult to acquire injection mass data by experiment because condition in engine vary with temperature, pressure, and so on. So, this paper suggests the AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) as simulation program to calculate injection mass. For both simulation and experiment, n-heptane is used as fuel. In AMESim, I modeled the GDI injector and simulated several cases. In experiment, I acquired the injection mass using Bosch method to apply ambient pressure. The AMESim show reasonable result in comparison with experimental data especially at injection pressure 15 MPa. Other conditions are also in good accord with experimental data but error is a little bit large because the injection mass is so low.

A Study on Injection Characteristic using Active Temperature Control of Injection mold (사출 금형의 능동형 온도제어에 따른 사출특성에 관한 연구)

  • Cho, C.Y.;Sin, H.G.;Hong, N.P.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.302-305
    • /
    • 2007
  • In recent years, many researches on new storage media with high capacity and information are developing. For manufacture of optical storage with high capacity, the injection molding process is generally used. In order to increase the filling ratio of the injection molding structure, the injection molding process required for high injection pressure, packing pressure and temperature control of the mold. However, conventional injection molding process is difficult to increase the filling ratio using injection master with the range of several nanometers and high aspect ratio. In order to improve and increase filling ratio of nano-structure with high aspect ratio, the active temperature control of injection mold was used. Experimental conditions were used injection pressure, time and temperature. Consequently, by using the peltier device into injection mold, we carried out the efficient and active temperature control of mold at low cost.

  • PDF