• Title/Summary/Keyword: a injection

Search Result 12,585, Processing Time 0.042 seconds

EFFECTS OF A SPLIT INJECTION ON SPRAY CHARACTERISTICS FOR A COMMON-RAIL TYPE DIESEL INJECTION SYSTEM

  • PARK S. W.;SUH H. K.;LEE C. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.315-322
    • /
    • 2005
  • This work was performed to investigate the effect of a split injection on spray characteristics of fuel sprays injected from a common rail system. In order to analyze the spray behavior and atomization characteristics at various rates of split injections, the injection durations of pilot and main injections were varied in experiments. The injection rate of split injection was measured to study the effect of the pilot injection on the main injection. By using a Nd:YAG laser and an ICCD camera, the development of the injected spray was visualized at various elapsed time from the start of injection. The microscopic characteristics such as SMD and axial velocity were analyzed by using a phase Doppler particle analyzer system. The results indicate that the ambient gas flow generated by the pilot injection affects the behavior of main spray, whereas the effect of pressure variation on the main spray is little. The spray tip penetration of a main spray with pilot injection is longer than that of the single injection by the effect of ambient gas flow. Also the main spray produces larger droplets than the pilot spray due to a small relative velocity between the droplets and ambient gas.

Numerical Study of Combustion Characteristics in CNG DI Engine using Gaseous Sphere Injection Model (기체구 분사 모델을 이용한 CNG DI 엔진의 연소특성 수치해석)

  • Choi, Mingi
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.171-177
    • /
    • 2019
  • This paper describes numerical study of combustion characteristics in CNG(compressed natural gas) DI(direct injection) engine using gaseous sphere injection model. Simulations were conducted using KIVA-3V Release 2 code. Gaseous sphere injection model, which is modified model of liquid fuel injection, was used to simulate the CNG direct injection. Until now, a very fine mesh smaller than the injector nozzle has been required to resolve the gas-jet inflow boundary. However, the gaseous sphere injection model simulates gaseous fuel injection using a coarse mesh. This model injects gaseous spheres as in liquid fuel injection and the gaseous spheres evaporate together without the latent heat of evaporation. Therefore, it does not require a very fine mesh and reduce calculation time. Combustion simulation were performed under various injection timings and injection pressures.

The Cooling Performance Enhancement of a Variable Speed Heat Pump Using Gas Injection Technique (가스인젝션 기술을 적용한 공기열원 가변속 열펌프의 냉방성능 향상에 관한 연구)

  • Jeong, Min-Woo;Heo, Jae-Hhyeok;Jung, Hae-Won;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.425-432
    • /
    • 2009
  • In this study, the improvement of cooling capacity by applying gas injection technique in a two-stage heat pump using R410A was experimentally investigated. A twin rotary type compressor with gas injection was applied to the heat pump system. The optimum refrigerant charge for the injection and the non-injection cycles was selected to achieve the maximum COP at the cooling standard condition. The injection cycle showed less optimum refrigerant charge than that of the non-injection cycle. The cooling performances of the injection and the non-injection cycles were measured and compared by varying compressor frequency from 40 to 90 Hz. The cooling capacity of the gas injection cycle was 1.6% -11.3% higher than that of the non-injection cycle. The COP of the gas injection cycle was 13.7% to 28.9% higher than that of the non-injection cycle at the same cooling capacity. The heat pump system showed stable operation after 30% of the injection valve opening.

A Study to Develop Optimal Injection System Using ISIS(the In-situ Soil Injection Simulator) (ISIS 시스템을 이용한 최적 그라우팅 시스템 개발 연구)

  • 천병식;김진춘;김경민;이민호;이정훈;김진수;박종근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.619-626
    • /
    • 2002
  • In this study, a correlation among pressure, time and quantity of injection was organized from the laboratory tests, which were executed many times representing in-situ soil conditions carefully and then it would be applied to the in-situ soil injection simulator which will be developed for optimal injection into the ground. The sort of sample soils were both sand(A specimen) and silty sand(B specimen). Injection tests were gone into operation by compaction state, injection velocity and the depth individually. In the ground improved with permeation Infection, the relation among injection pressure of the same depth, the injected quantities and time were systematic by the depth. By defining the limit range of injection pressure and quantity about the variety of a linear equation obtained from lining each of their trend, the application of laboratory injection monitoring program and the data to evaluate its realization were produced. In the ground improved with root type injection, the relation between injection pressure and the injected quantities was irregular because fracture state occurred quickly.

  • PDF

A Study on the Stratified Combustion and Stability of a Direct Injection LPG Engine (직접분사식 LPG 엔진의 성층화 연소 및 안정성에 관한 연구)

  • LEE, MINHO;KIM, KIHO;HA, JONGHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.106-113
    • /
    • 2016
  • Lean burn engine, classified into port injection and direct injection, is recognized as a promising way to meet better fuel economy. Especially, LPG direct injection engine is becoming increasingly popular due to their potential for improved fuel economy and emissions. Also, LPDi engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. However, LPDi engine has many difficulties to be solved, such as complexity of injection control mode (fuel injection timing, injection rate), fuel injection pressure, spark timing, unburned hydrocarbon and restricted power. This study is investigated to the influence of spark timing, fuel injection position and fuel injection rate on the combustion stability of LPDi engine. Piston shape is constituted the bowl type piston. The characteristics of combustion is analyzed with the variations of spark timing, fuel injection position and fuel injection rate (early injection, late injection) in a LPDi engine.

The Effect of Triple Injection on Engine Performance and Emissions in a HSDI Diesel Engine (3중분사가 HSDI 디젤엔진의 성능과 배기에 미치는 영향)

  • Choi, Wook;Park, Cheol-Woong;Kook, Sang-Hoon;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.40-57
    • /
    • 2004
  • The effects of triple (pilot, main and after) injection on combustion and emission characteristics in a HSDI (High-Speed Direct Injection) diesel engine were investigated using a single-cylinder optical diesel engine equipped with a common-rail injection system. The pilot injection affected the spray and combustion evolution of the following main injection. It was found that the pilot injection reduced the ignition delay, which led to lowered NOx (Nitric Oxides) level, and increased IMEP (Indicated Mean Effective Pressure) due to slow combustion pace during an expansion stroke. The after-injection was shown to be effective in reducing PM (Particulate Matter) even when a small amount of fuel was added. The results suggest that a proper combination of individual injection strategy could bring about a good synergetic effect on engine performance and emission.

Effect of Injection Parameters on Combustion and Exhaust Emission Characteristics in a Small Common-rail Diesel Engine (분사 조건의 변화가 소형 커먼레일 디젤 엔진의 연소 및 배기 특성에 미치는 영향)

  • Kim, Myung-Yoon;Lee, Doo-Jin;Roh, Hyun-Gu;Lee, Je-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.9-15
    • /
    • 2004
  • The characteristics of combustion and emissions were investigated in a single cylinder DI diesel engine equipped with a common rail injection system. This study presents an experimental study of the effect of engine speed, injection timing, injection pressure and pilot injection timing on the combustion and exhaust emissions. The engine speeds were 1000 and 2000rpm and the corresponding injection pressures were 50 and 100MPa. Experimental results show that NOx emissions decrease with retarded injection timing, while HC and CO emissions increases. Higher injection pressure increases NOx with lower soot emissions. For the case with the pilot injection prior to main injection, the ignition delay is shortened and the premixed combustion ratio decreases. Also NOx and soot emissions are decreased with increase of pilot injection advance.

A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels Using Pilot Injection in DICI Engine (직접분사식 압축착화엔진에서 Pilot분사에 따른 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-64
    • /
    • 2014
  • This work was investigated on pilot injection strategy of blended fuels(Diesel-DME) for combustion and emissions in a single cylinder direct injection compression ignition engine. Diesel and DME were blended by the method of weight ratio. Weight ratios for diesel and DME were 95:05 and 90:10 respectively. dSOI between main and pilot injection timing was varied. A total amount of injected fuels(single injection) was adjusted to obtain the fixed BMEP as 4.2 bar in order to compare with the fuel conditions. Also, the amount of pilot injection fuel was varied by 5%, 10% and 20% of total injection fuel. The engine was equipped with common rail and injection pressure is 700 bar at 1200 rpm. As a result, when mixing ratio increase, indicated thermal efficiency was increased in comparison with DD 100 and CO, THC and smoke were lower than DD 100. The influence of reducing NOx by pilot injection was more effective than DD 100. When pilot injection quantity increase, abrupt increase of NOx was occured at pilot injection quantity of 20%.

Effect of needle type on intravascular injection in transforaminal epidural injection: a meta-analysis

  • Kim, Jae Yun;Kim, Soo Nyoung;Park, Chulmin;Lim, Ho Young;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.32 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • Background: Lumbosacral transforaminal epidural injection (TFEI) is an effective treatment for spinal disease. However, TFEI may have several types of complications, some of which can be attributed to intravascular injection. We reviewed studies to compare the intravascular injection rate among different needle types. Methods: We searched the literature for articles on the intravascular injection rate among different needle types used in TFEI. The search was performed using PubMed, MEDLINE, the Cochrane Library, EMBASE, and Web of Science. Results: A total of six studies comprising 2359 patients were identified. Compared with the Quincke needle, the Whitacre needle reduced the intravascular injection rate (OR = 0.57, 95% CI = [0.44-0.73], P < 0.001). However, compared with the Quincke needle, the Chiba needle did not reduce the intravascular injection rate (OR = 0.80, 95% CI = [0.44-1.45], P = 0.46). In one study, the intravascular injection rate using a blunt-tip needle was lower than that using a sharp needle. In another study, the Whitacre and the blunt-tip needle have similar intravascular injection rates, while, the catheter-extension needle showed a reduced intravascular injection rate. Conclusions: This meta-analysis showed that the Whitacre needle reduced the intravascular injection rate as compared with the Quincke needle, but failed to establish that the Chiba needle can decrease the intravascular injection rate in TFEI. Moreover, the blunt-tip needle can reduce the intravascular injection rate compared with the Quincke needle, and the catheter-extension needle can reduce the intravascular injection rate compared with the Whitacre and the blunt-tip needle.

A Searching Method of Optima] Injection Molding Condition using Neural Network and Genetic Algorithm (신경망 및 유전 알고리즘을 이용한 최적 사출 성형조건 탐색기법)

  • Baek Jae-Yong;Kim Bo-Hyun;Lee Gyu-Bong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.946-949
    • /
    • 2005
  • It is very a time-consuming and error-prone process to obtain the optimal injection condition, which can produce good injection molding products in some operational variation of facilities, from a seed injection condition. This study proposes a new approach to search the optimal injection molding condition using a neural network and a genetic algorithm. To estimate the defect type of unknown injection conditions, this study forces the neural network into learning iteratively from the injection molding conditions collected. Major two parameters of the injection molding condition - injection pressure and velocity are encoded in a binary value to apply to the genetic algorithm. The optimal injection condition is obtained through the selection, cross-over, and mutation process of the genetic algorithm. Finally, this study compares the optimal injection condition searched using the proposed approach. with the other ones obtained by heuristic algorithms and design of experiment technique. The comparison result shows the usability of the approach proposed.

  • PDF