• 제목/요약/키워드: a hydraulic system

검색결과 2,695건 처리시간 0.036초

실시간 모의시험기의 적용에 관한 연구 (A Study on the Application of the Real-Time Simulator)

  • 장성욱;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.191-191
    • /
    • 2000
  • Hydraulic servo system is difficult to be made up and each component is very expensive, it takes long for actual system to make and test and it costs a high price. Because of these characteristics of hydraulic servo system, a real time simulator that could describe behavior of real system is highly demanded, without composing real hydraulic system. So, many studies have been (lone on these subjects and many simulators are developed with superiority. Since the nonlinearity of a hydraulic system common simulator have composed of many calculative times byusing DSP(Digital Signal processing) and have made it possible to find the situations of the system in real time, calculating hydraulic simulation and controller separately. In this study, we suggest real-time simulator that could describe real system without ordinary DSP card. This simulator is composed of 80196kc and personal computer. DSP card that has calculated complex numerical equation is supplanted by personal computer and 80196kc generates control signals independently out of the personal computer. In all process, personal computer is synchronized with one-board microprocessor within sampling time in the closed loop system. This makes it possible to be described in hydraulic servo system in real time. And to make a comparison between the result of the real-time simulator and a hydraulic servo system.

  • PDF

차세대전동차에 유압저동 적용방안 연구 (A Study on the Application Method of Hydraulic Brake System for Advanced EMU)

  • 이우동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.259-261
    • /
    • 2005
  • The hydraulic brake system is recently apply to the AGT system such merit as installation is convenient and brake force is stronger than pneumatic brake system. The hydraulic brake system consist of brake operating unit, electronic control unit, air compressor and pneumatic/hydraulic tranducer. The components of it are controlled and designed to perform the function of brake system. Therefore, This paper design and the hydraulic brake system and propose the detection of development for Urban Transit System.

  • PDF

유압식 클러치 조작기구의 압력맥동저감에 대한 연구 (A Study on the Pressure Pulsation Reduction for a Hydraulic Clutch Operating System)

  • 이춘태
    • 한국정밀공학회지
    • /
    • 제25권4호
    • /
    • pp.93-99
    • /
    • 2008
  • The clutch is a subcomponent of the transmission that is designed to engage and disengage power flow between the engine and the transmission. Recently, the engine power of automobile has been continuously increased because of customer's demand for the bigger one. As the engine power is increased, the vibration transmitted to the hydraulic clutch operating system has been increased. Therefore the demand for the reduction of clutch pedal vibration during the operation of the clutch system has been increased. This paper describes the pressure pulsation reduction characteristics of the damper cylinder which is applied to the hydraulic clutch operating system. And the purpose of this study is to confirm the availability of a simulation model and investigating the test results of hydraulic clutch operating system. The test results are compared with the simulation results. Therefore it may be concluded that the simulation model and test results will be very useful f3r the design of hydraulic clutch damper cylinder.

유압 구동계 에너지 재생 브레이크를 적용한 자동차 테일게이트 개폐장치에 대한 동특성 해석 (Dynamic Analysis on the Tail Gate System for Vehicle with the Energy Regenerative Brake of Hydraulic Driven Systems)

  • 최순우;허준영
    • 유공압시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.19-26
    • /
    • 2010
  • The typical trunk lid system for vehicle is composed of a hinge having 4-bar link and gas lifter. Here, the energy regenerative brake of hydraulic driven systems is applied to the tail gate system for vehicle and removed the gas lifter. The new tail gate system is composed of a hydraulic pump by electric motor, a hydraulic motor, four check valves, an accumulator, a relief valve and a directional control valve. The dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, are investigated in both brake action and acceleration action. The capacity selection method of accumulator by mathematical model is based upon trial and error approach and computer simulation by AMEsim software is carried out.

  • PDF

폐루프 유압 에너지 회생 시스템에 관한 연구 (Design and Assessments of a Closed-loop Hydraulic Energy-Regenerative System)

  • 호 치엣 흥;윤종일;안경관
    • 유공압시스템학회:학술대회논문집
    • /
    • 유공압시스템학회 2010년도 춘계학술대회
    • /
    • pp.116-125
    • /
    • 2010
  • In this study, a novel hydraulic energy-regenerative system was presented from its proposal through its modeling to its control. The system was based on a closed-loop hydrostatic transmission and used a hydraulic accumulator as the energy storage system in a novel configuration to recover the kinetic energy without any reversion of the fluid flow. The displacement variation in the secondary unit was reduced, which widened the uses of several types of hydraulic pump/motors for the secondary unit. The proposed system was modeled based on its physical attributes. Simulation and experiments were performed to evaluate the validity of the employed mathematical model and the energy recovery potential of the system. The experimental results indicated that the round trip recovery efficiency varied from 22% to 59% for the test bench.

  • PDF

전동차에 유압제동장치 적용방안 연구 (A Study on the Hydraulic Brake Application of Electrical Multiple Unit)

  • 이우동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1355-1357
    • /
    • 2004
  • The hydraulic brake system is recently apply to the AGT system such merit as installation is convenient and brake force is stronger than pneumatic brake system. The hydraulic brake system consist of brake operating unit, electronic control unit, air compressor and pneumatic/hydraulic tranducer. The components of it are controlled and designed to perform the function of brake system. Therefore, This paper design and the hydraulic brake system and propose the derection of development for Urban Transit System.

  • PDF

비례 위치 제어용 소형 유압 서보 기구의 특성에 관한 연구 (A Study on the Characteristics of the Compact Hydraulic Servo Mechanism for Proportional Position Control)

  • 이승현;송창섭
    • Tribology and Lubricants
    • /
    • 제18권1호
    • /
    • pp.49-54
    • /
    • 2002
  • In this study, the characteristics of the hydraulic servo mechanism for proportional position control of a hydraulic construction eguipment were analyzed using the developed analysis tool. The result were used in the others hydraulic system except construcdtion eguipment to improve the static performance of the system, the system parameter effects on the controllable region and the hydraulic servo mechanism variation were studied.

2차원 학습 회귀적 신경망을 이용한 전기.유압 서보시스템의 실시간 추종 (Real-time Approximation of a Hydraulic Servo System Using a Recurrent Neural Network with 2-D Learning Algorithm)

  • 정봉호;곽동훈;이춘태;이진걸
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.94-100
    • /
    • 2003
  • This paper presents the experiments on the approximation of a hydraulic servo system using a real time recurrent neural networks (RTRN) with time varying weights. In order to verify the effectiveness of the RTRN algorithm in hydraulic servo system, we design the experimental hydraulic system and implemented the real time approximation of system output. Experimental results show that approximated output of the RTRN well follows the position trajectory of the electro-hydraulic servo system. And also it is verified that the 2-D RNN can be implemented in sampling time even though high sampling frequency experimentally.

전도 수문용 유압장치의 에너지 효율에 관한 연구 (Study for the Energy Efficiency of Hydraulic System of Turnover-Type Sluice Gate)

  • 이성래
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1225-1230
    • /
    • 2007
  • The turnover-type sluice gate is typically actuated by the hydrauic system. The hydraulic system may be a open circuit type or a closed circuit type. The open circuit type hydraulic system is composed of a uni-directional pump, a directional control valve, pilot operated check valves, flow control valves, single-rod cylinders. The closed circuit type hydraulic system is composed of a bi-directional pump, pilot operated check valves, check valves, a counter balance valve, single-rod cylinders. The energy efficiencies of two hydraulic systems for the turnover-type sluice gate are compared here.

  • PDF

유압시스템의 궤적 추종 시뮬레이션 모델 개발 (Development of Simulation Model for Trajectory Tracking on Hydraulic System)

  • 최종환
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.61-66
    • /
    • 2008
  • The hydraulic system have been used much in a heavy machine which high power source is desired. In the case of the heavy press machine and the injection molding machine, the use of the hydraulic power is essential especially for increasing productivity and getting the good products. Because the hydraulic circuit is very complex and the system parameters are uncertain, the development of the simulation model for hydraulic system is not easy in the heavy machine. In this case, Many researchers have used a commercial program for analysis and development in a major field of study. In this paper, the aim is to develop the simulation model of the hydraulic system with various commercial program for trajectory tracking. And adaptive control method is applied to the simulation model for the trajectory tracking of a cylinder motion. Load on the cylinder is modeled in ADAMS program, the hydraulic circuit including pump, spool valve and cylinder is modeled in AMESim program and a controller is designed in MatLab/simulink program. The suggested model is applied for the tracking of a cylinder motion, and through computer simulation, its trajectory tracking performance is illustrated.

  • PDF