• Title/Summary/Keyword: a evolutionary programming

Search Result 119, Processing Time 0.028 seconds

EP Based PSO Method for Solving Multi Area Unit Commitment Problem with Import and Export Constraints

  • Venkatesan, K.;Selvakumar, G.;Rajan, C. Christober Asir
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.415-422
    • /
    • 2014
  • This paper presents a new approach to solve the multi area unit commitment problem (MAUCP) using an evolutionary programming based particle swarm optimization (EPPSO) method. The objective of this paper is to determine the optimal or near optimal commitment schedule for generating units located in multiple areas that are interconnected via tie lines. The evolutionary programming based particle swarm optimization method is used to solve multi area unit commitment problem, allocated generation for each area and find the operating cost of generation for each hour. Joint operation of generation resources can result in significant operational cost savings. Power transfer between the areas through the tie lines depends upon the operating cost of generation at each hour and tie line transfer limits. Case study of four areas with different load pattern each containing 7 units (NTPS) and 26 units connected via tie lines have been taken for analysis. Numerical results showed comparing the operating cost using evolutionary programming-based particle swarm optimization method with conventional dynamic programming (DP), evolutionary programming (EP), and particle swarm optimization (PSO) method. Experimental results show that the application of this evolutionary programming based particle swarm optimization method has the potential to solve multi area unit commitment problem with lesser computation time.

A Study on an Artificial Neural Network Design using Evolutionary Programming (진화 프로그래밍 기법을 이용한 신경망의 자동설계에 관한 연구)

  • 강신준;고택범;우천희;이덕규;우광방
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.281-287
    • /
    • 1999
  • In this paper, a design method based on evolutionary programming for feedforward neural networks which have a single hidden layer is presented. By using an evolutionary programming, the network parameters such as the network structure, weight, slope of sigmoid functions and bias of nodes can be acquired simultaneously. To check the effectiveness of the suggested method, two numerical examples are examined. The performance of the identified network is demonstrated.

  • PDF

Application to Generation Expansion Planning of Evolutionary Programming (진화 프로그래밍의 전원개발계획에의 적용 연구)

  • Won, Jong-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.4
    • /
    • pp.180-187
    • /
    • 2001
  • This paper proposes an efficient evolutionary programming algorithm for solving a generation expansion planning(GEP) problem known as a highly-nonlinear dynamic problem. Evolutionary programming(EP) is an optimization algorithm based on the simulated evolution (mutation, competition and selection). In this paper, new algorithm is presented to enhance the efficiency of the EP algorithm for solving the GEP problem. By a domain mapping procedure, yearly cumulative capacity vectors are transformed into one dummy vector, whose change can yield a kind of trend in the cost value. To validate the proposed approach, this algorithm is tested on two cases of expansion planning problems. Simulation results show that the proposed algorithm can provide successful results within a resonable computational time compared with conventional EP and dynamic programming.

  • PDF

A Hybrid Method for Improvement of Evolutionary Computation (진화 연산의 성능 개선을 위한 하이브리드 방법)

  • Chung, Jin-Ki;Oh, Se-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.317-322
    • /
    • 2002
  • The major operations of Evolutionary Computation include crossover, mutation, competition and selection. Although selection does not create new individuals like crossover or mutation, a poor selection mechanism may lead to problems such as taking a long time to reach an optimal solution or even not finding it at all. In view of this, this paper proposes a hybrid Evolutionary Programming (EP) algorithm that exhibits a strong capability to move toward the global optimum even when stuck at a local minimum using a synergistic combination of the following three basic ideas. First, a "local selection" technique is used in conjunction with the normal tournament selection to help escape from a local minimum. Second, the mutation step has been improved with respect to the Fast Evolutionary Programming technique previously developed in our research group. Finally, the crossover and mutation operations of the Genetic Algorithm have been added as a parallel independent branch of the search operation of an EP to enhance search diversity.

Robust Evolutionary Programming Technique for Optimal Control Problems

  • Park, C.;Lee, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.50.2-50
    • /
    • 2001
  • Optimal control problems are notoriously difficult to solve either analytically or numerically except for limited cases of having simple dynamics. Evolutionary programming is a promising method of solving various optimal control problem arising in practice since it does not require the expression of Lagrange´s adjoint system and that it can easily implement the inequality constraints on the control variable, In this paper, evolutionary programming is combined with spline method, so the smoother control profile and the Jumping times could be obtained. The optimal profiles obtained by the proposed method are compared with exact solution if it is available. With more complicated model equation, the proposed method showed better performance than other researchers´. It is demonstrated that the evolutionary programming with spline method can ...

  • PDF

Evolutionary Design of Fuzzy Model (퍼지 모델의 진화 설계)

  • Kim, You-Nam
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.11
    • /
    • pp.625-631
    • /
    • 2000
  • In designing fuzzy model, we encounter a major difficulty in the identification of an optimized fuzzy rule base, which is traditionally achieved by a tedious-and-error process. This paper presents an approach to automatic design of optimal fuzzy rule bases for modeling using evolutionary programming. Evolutionary programming evolves simultaneously the structure and the parameter of fuzzy rule base a given task. To check the effectiveness of the suggested approach, 3 examples for modeling are examined, and the performance of the identified models are demonstrated.

  • PDF

Finding Stability Indices Using Evolutionary Programming (진화 프로그래밍을 이용한 안정지수 결정)

  • 신진욱;김인택;강환일
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.39-42
    • /
    • 2000
  • Both evolutionary programming (EP) and genetic algorithm (GA) are classified as evolutionary computation. They have been successful in finding a solution in a wide search space. In this paper, our objectives are to find the coefficients of characteristic equation, in terms of the stability indices using EP and GA, and to make a comparison of both methods.

  • PDF

A Hybrid Method for Improvement of Evolutionary Computation (진화 연산의 성능 개선을 위한 하이브리드 방법)

  • 정진기;오세영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.159-165
    • /
    • 2002
  • 진화연산에는 교배, 돌연변이, 경쟁, 선택이 있다. 이러한 과정 중에서 선택은 새로운 개체를 생산하지는 않지만, 모든 해중에서 최적의 해가 될만한 해는 선택하고, 그러지 않은 해는 버리는 판단의 역할을 한다. 따라서 아무리 좋은 해를 만들었다고 해도, 취사 선택을 잘못하면, 최적의 해를 찾지 못하거나, 또 많은 시간이 소요되게 된다. 따라서 본 논문에서는 stochastic한 성질을 갖고 있는 Tournament selection에 Local selection개념을 도입하여, 지역 해에서 벗어나 전역 해를 찾는데, 개선이 될 수 있도록 하였고 Fast Evolutionary Programming의 mutation과정을 개선하고, Genetic Algorithm의 연산자인 crossover와 mutation을 도입하여 Parallel search로 지역 해에서 벗어나 전역 해를 찾는 하이브리드 알고리즘을 제안하고자 한다.

  • PDF

Comparison of Evolutionary Computation for Power Flow Control in Power Systems (전력계통의 전력조류제어를 위한 진화연산의 비교)

  • Lee, Sang-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • This paper presents an unified method which solves real and reactive power dispatch problems for the economic operation of power systems using evolutionary computation such as genetic algorithms(GA), evolutionary programming(EP), and evolution strategy(ES). Many conventional methods to this problem have been proposed in the past, but most of these approaches have the common defect of being caught to a local minimum solution. The proposed methods, applied to the IEEE 30-bus system, were run for 10 other exogenous parameters and composed of P-optimization module and Q-optimization module. Each simulation result, by which evolutionary computations are compared and analyzed, shows the possibility of applications of evolutionary computation to large scale power systems.

Designing New Algorithms Using Genetic Programming

  • Kim, Jin-Hwa
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.171-178
    • /
    • 2004
  • This study suggests a general paradigm enhancing genetic mutability. Mutability among heterogeneous members in a genetic population has been a major problem in application of genetic programming to diverse business problems. This suggested paradigm is implemented to developing new methods from existing methods. Within the evolutionary approach taken to designing new methods, a general representation scheme of the genetic programming framework, called a kernel, is introduced. The kernel is derived from the literature of algorithms and heuristics for combinatorial optimization problems. The commonality and differences among these methods have been identified and again combined by following the genetic inheritance merging them. The kernel was tested for selected methods in combinatorial optimization. It not only duplicates the methods in the literature, it also confirms that each of the possible solutions from the genetic mutation is in a valid form, a running program. This evolutionary method suggests diverse hybrid methods in the form of complete programs through evolutionary processes. It finally summarizes its findings from genetic simulation with insight.

  • PDF