• 제목/요약/키워드: a electro-hydraulic

검색결과 275건 처리시간 0.027초

GA를 이용한 전기유압식 가변펌프의 압력제어 (Pressure Control of Electro-Hydraulic Variable Displacement Pump Using Genetic Algorithms)

  • 안경관;현장환;조용래;오범승
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.48-55
    • /
    • 2004
  • This study presents a genetic algorithm-based method fur optimizing control parameters in the pressure control of electro-hydraulic pump with variable displacement. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics and search the optimal control parameters maximizing a measure that evaluates the performance of a system. Four control gains of the PI-PD cascade controller for an electro-hydraulic pressure control system are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that genetic algorithm is an efficient scheme in optimizing control parameters of the pressure control of electro-hydraulic pump with variable displacement.

전기-유압 액추에이터를 이용한 굴삭기 에너지 절감에 관한 기초 연구 (A study on Energy Saving of the Excavator using Electro-Hydraulic Actuator)

  • 윤홍수;안경관;이병룡;강종민;김재홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.801-805
    • /
    • 2008
  • Today, hydraulic systems play an important role in modern industry for the reasons that hydraulic actuator systems take many advantages over other technologies with high durability and the ability to produce large forces at high speeds. In recent years, electro-hydraulic actuator systems, which combine electric and hydraulic technology into a compact unit, have been adapted to a wide variety of force, speed and torque requirements. Moreover these systems resolve energy consumption and noise problems characteristic existed in the conventional hydraulic systems. Therefore, these systems have a wide range application fields especially in an excavator. So the purpose of this paper is to demonstrate efficiency of the energy saving and present some control algorithms which apply to electro-hydraulic actuator system in the bucket of the excavator. Experiments are carried out to verify the effectiveness of the proposed system with various external loads as in real working conditions.

  • PDF

Design and Experimental Evaluation of a Robust Force Controller for a 6-Link Electro-Hydraulic Manipulator via H$_{\infty}$ Control Theory

  • Ahn, Kyoung-Kwan;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.999-1010
    • /
    • 2003
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. This maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulators because hydraulic manipulators have the advantage of electric insulation and power/mass density. Meanwhile an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this paper, the robust force control of a 6-link electro-hydraulic manipulator system used in the real maintenance task of active electric lines is examined in detail. A nominal model for the system is obtained from experimental frequency responses of the system, and the deviation of the manipulator system from the nominal model is derived by a multiplicative uncertainty. Robust disturbance observers for force control are designed using this information in an H$\_$$\infty$/ framework, and implemented on the two different setups. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved even if the stiffness of environment and the shape of wall change.

점검환경에서 유압서보제어기 검증효율을 개선하기 위한 유압식 구동장치 시뮬레이터 개발 (Development of an Electronic Simulator for Efficiency Improvement to Verify Electro-Hydraulic Servo Controllers in an Examination Set-up)

  • 한승철
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권3호
    • /
    • pp.50-57
    • /
    • 2017
  • Recently, methods of verification for electro-hydraulic servo controllers are various and the required number of testing controllers is continuously increasing in some specific systems. In this study, a PCB-based electronic simulator of hydraulic actuators is designed and developed to simplify test set-up for controllers and to facilitate alteration for characteristics of the simulator. Several features to reduce required time and manpower for verifying controllers are described. Especially, the simulator is considerably efficient to examine some controllers for different hydraulic actuators in a test. Response characteristics of the simulator are compared with those of real actuators to demonstrate validity of this method. Results reveal utilizing the designed simulator for inspecting controllers is equally effective as using hydraulic actuators.

전기-유압 서보 시스템의 모델규명에 관한 연구 (A Study on Model Identification of Electro-Hydraulic Servo Systems)

  • 엄상오;황이철;박영산
    • 한국정보통신학회논문지
    • /
    • 제3권4호
    • /
    • pp.907-914
    • /
    • 1999
  • This paper studies on the model identification of electro-hydraulic servo systems, which are composed of servo valves, double-rod cylinder and load mass. The identified plant is described as a discrete-time ARX or ARMAX model which is respectively obtained from the identification algorithms of least square error method, instrumental variable method and prediction error method. where a nominal model and the variation of model parameters are quantitatively evaluated.

  • PDF

PFC보상기를 응용한 6축 전기 유압매니퓰레이터의 강인 제어 (Robust Control of a 6-Link Electro-Hydraulic Manipulator using Parallel Feed forward Compensator)

  • 안경관;정연오
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.89-96
    • /
    • 2003
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear abetments, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable but also accurate trajectory control for the autonomous assembly tasks using hydraulic manipulators. In this report, we propose a two-degree-of-freedom control including parallel feedforward compensator (PFC) where PFC plays a very important role in the stability of a proposed control system. In the experimental results of the 6-link electro hydraulic manipulator, it is verified that the stability and the model matching performance are improved by using the proposed control method.

전기.유압 서보시스템의 수정된 신경망-유전자 알고리즘에 의한 파라미터 식별 (Parameter Identification of an Electro-Hydraulic Servo System Using a Modified Hybrid Neural-Genetic Algorithm)

  • 곽동훈;이춘태;정봉호;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.442-447
    • /
    • 2003
  • This paper demonstrates that a modified hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. The modified hybrid neural-genetic multimodel parameter estimation algorithm is applied to an electro-hydraulic servo system the task to find the parameter values such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimizes the total square error.

능동 현가시스템의 성능평가를 위한 유압식 시험기의 설계 및 제어에 관한 연구 (A study on design and control of hydraulic test rig for performance evaluation of active suspension system)

  • 손영준;이광희;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1445-1449
    • /
    • 1996
  • To evaluate of active suspension, it is necessary for special equipment - so called Test Rig which can perfectly realize the road condition and the impact from the road. And most of the test rig systems controlling force accurately and rapidly consist of electro-hydraulic servo mechanism, and they need robust controller which can endure outer road change. But in the case of PID controller, we should choose its best gains by trial and error method, and once its gains are fixed, they cannot get changed, so we should reset PID controller gains respectively when the road is changed. Therefore based on the load pressure feedback compensation method, our aim at constructing electro-hydraulic test rig is not affected by various road disturbance.

  • PDF

기계임피던스 감소기법을 이용한 회전형 전기-유압식 구동기의 모델 없는 토크제어방법 (Model-Free Torque Control of Rotary Electro-Hydraulic Actuator using Mechanical Impedance Reduction)

  • 이웅용;정완균
    • 로봇학회논문지
    • /
    • 제15권1호
    • /
    • pp.77-89
    • /
    • 2020
  • This paper proposes a simple and intuitive model-free torque-tracking control for rotary electro-hydraulic actuators. The undesirable natural-velocity-feedback effect is discussed by introducing mechanical impedance into the electro-hydraulic actuation system. The proposed model-free torque control comprises inner- and outer-loop control to achieve two control objectives. Inner-loop control reduces the mechanical impedance passively and optimally. To improve the tracking accuracy, a certain form of proportional-integral-derivative control is applied to the outer loop. The robustness of the proposed closed-loop system against external disturbances is demonstrated by transforming the two-loop control structure into a disturbance observer form. The proposed method is validated on a single joint electro-hydraulic actuator.

컨볼루션을 이용한 전자 유압 시스템의 피크압력 저감 제어 연구 (A Study of Peak Pressure Reduction Control of Electro Hydraulic System using Convolution)

  • 김경수;정진범;유범상
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권3호
    • /
    • pp.59-66
    • /
    • 2019
  • Hydraulic systems are essential for most of the construction equipments due to their various advantages, such as very powerful, quick response speed, precision control and remote control. Moreover, they are necessary to apply the electro hydraulic systems for precise and remote controls. Operating the small electronic joystick of the remote controller for the control of a multipurpose work machine with remote control technology increases the possibility of a sudden operation compared to the use of a conventional hydraulic joystick. When a joystick is suddenly operated, the peak pressure is generated in the system due to the quick response of the system. Then a vibration is generated due to the peak pressure, which causes instability to the operation of the construction equipment. Therefore, in this study, we confirmed the level of reduction of peak pressure occurring in the electro hydraulic system by using AMESim, when the output signal of the step shape generated by the sudden operation of the electronic joystick was changed by using the convolution operation.