• Title/Summary/Keyword: a cylinder

Search Result 4,789, Processing Time 0.03 seconds

The Effects of Yaw on the Vortex-Shedding Sound from a Circular Cylinder (원형실린더 와류발생 소음에 대한 경사각 효과)

  • 홍훈빈;최종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.263-270
    • /
    • 1997
  • For a cylinder in a uniform flow stream, sound is generated by the fluctuating pressure on the cylinder surface due to the vortex shedding behind the cylinder. It is known that the major parameters to predict the sound pressure are the characteristic length of the flow along the cylinder axis and the fluctuating lift coefficient. These parameters strongly depend on the Reynolds number and the yaw angle of the cylinder to the free stream. In this experimental study the effects of yaw on the flow parameters, and consequently on the generated sound are investigated. The surface pressure and the radiated sound are measured simultaneously for different yaw angles and showed that the reduced normal velocity component to the cylinder axis reduces the unsteady lift fluctuation which results in lowered sound press-are level, However, experimental result shows that "the cosine law" which uses the normal velocity component as a characteristic velocity for noise Generation from a yawed cylinder needs to be carefully reviewed. reviewed.

  • PDF

Effects of aspect ratio on natural convective heat transfer from a vertical isothermal cylinder immersed in cold pure water (저온의 순수물속에 잠겨있는 등온수직 원기둥에 의한 자연대류 열전달에 종횡비가 미치는 영향)

  • 유갑종;엄용균;이성진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.677-684
    • /
    • 1991
  • A numerical analysis is performed about the effects of aspect ratio on natural convective heat transfer from a vertical isothermal cylinder of 0.deg. C immersed in cold pure water. The results of analysis include velocity profiles, temperature profiles and mean Nusselt number of the steady flow region. As aspect ratio of vertical cylinder increases, the flow and heat transfer characteristics of vertical isothermal cylinder approach to those of vertical isothermal flat plate. Numerical solutions obtained for Rayleigh number and aspect ratio indicate the cylinders can be classified as short cylinder and long cylinder. In the cases of short cylinder and long cylinder, new heat transfer correlations are presented. Here, the coefficient values C of new heat transfer correlations are presented as the function of density extremum parameter $R^*/. Numerical results show that theoretical results are in close agreement with experimental results.ts.

In-cylinder Spray Flow Characteristics in Direct-injection Gasoline Engine (직접 분사식 가솔린 엔진의 실린더 내 분무 유동 특성에 관한 연구)

  • 김진수;전문수;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.51-59
    • /
    • 2000
  • In-cylinder spray flow motion plays an important in the adjustment of mixture preparation with a fundamental spray characteristics and in-cylinder flow field well in direct-injection gasoline engine. In this study, the fundamental spray characteristics such as mean drop size, velocity distribution, spray angle were measured and in-cylinder spray flow motion was visualized in order to optimize intake port, piston top land and combustion chamber shapes in the development stage of mass-produced G야 engine. For these experiments, the PDPA measurements and Mie scattering technique were used for detailed spray characteristics and in-cylinder spray motions were obtained by use of ICCD camera through the single-cylinder optical engine. From the experimental results, the test injector shows a good low-end linearity between the dynamic flow and fuel injection pulse width and the fuel spray of 20mm or less in SMD with good spray symmetry. In addition, the in-cylinder tumble flow has more effect on the homogeneous mixture formation than that of in-cylinder swirl flow at early injection mode and the in-cylinder swirl flow plays a better role of stratified mixture preparation than tumble flow at late injection mode.

  • PDF

A Study on the Fatigue Life of Autofrettaged Compound Cylinder (자긴가공된 이중후육실린더의 피로수명에 관한 연구)

  • Lee, Eun-Yup;Lee, Young-Shin;Yang, Qui-Ming;Kim, Jae-Hoon;Cha, Ki-Up;Hong, Suk-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.296-309
    • /
    • 2009
  • Thick-walled cylinder with high pressure have had wide application in the armament industry. In the thick-walled cylinder, fatigue crack is generated at inner radius and developed toward the outer radius. To prevent generation of fatigue crack, the autofrettage process had been used. The compressive residual stress induced by the autofrettage process extends loading pressure and fatigue life of the thick-walled cylinder. In this study, the residual stress of single and compound cylinder by the autofrettage process was evaluated. The analytical compressive residual stress of single cylinder was good agreement with experimental result at inner radius. The analysis on the residual stress of compound cylinder was conducted. The compressive residual stress at inner radius was increased with the overstrain level. And fatigue life of the compound cylinder with initial crack was evaluated. The considered initial crack shape was straight and semi-elliptical. The fatigue life was extended with the overstrain level. The fatigue life of the compound cylinder with semi-elliptical crack was longer than straight crack. The suitable way to extend fatigue life of the compound cylinder was proposed.

Interaction between Turbulent Boundary Layer and Wake Behind an Elliptic Cylinder at Incidence (앙각을 가진 타원형 실린더 후류와 평판경계층의 상호작용에 대한 연구)

  • Choi, Jae-Ho;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.976-983
    • /
    • 2000
  • The flow characteristics around an elliptic cylinder with axis ratio of AR=2 located near a flat plate were investigated experimentally to study the interaction between the cylinder wake and the turbulent boundary layer. The pressure distributions on the cylinder surface and on the flat plate were measured with varying the angle of attack of the cylinder. In addition, the velocity profiles of wake behind the cylinder were measured using a hot-wire anemometry As the angle of attack increases, the location of peak pressure on the windward and leeward surfaces of the cylinder moves toward the rear and front of the cylinder, respectively. At positive angles of attack, the position of the minimum pressure on the flat plate surface is moved downstream, but it is moved upstream at negative angles of attack. With increasing the angle of attack, the vortex shedding frequency is gradually decreased and the critical angle of attack exists in terms of the gap ratio. By installing the elliptic cylinder at negative angle of attack, the turbulent boundary layer over the flat plate is disturbed more than that at positive incidence. This may be attributed to the shift of separation point on the lower surface of the cylinder due to the presence of a ground plate nearby.

DURABILITY IMPROVEMENT OF A CYLINDER HEAD IN CONSIDERATION OF MANUFACTURING PROCESS

  • Kim, B.;Chang, H.;Lee, K.;Kim, C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.243-248
    • /
    • 2007
  • The durability of a cylinder head is influenced by the thermal and mechanical history during the manufacturing process, as well as engine operation. In order to improve the durability of cylinder head, both load from engine operation and the preload conditions from the manufacturing process must be considered. The aluminum cylinder head used for a HSDI diesel engine is investigated to reduce the possibility of high cycle fatigue crack in this study. FE analysis is performed to elucidate the mechanism of high cycle fatigue crack in the HSDI diesel cylinder head. Two separate approaches to increase the durability of the cylinder head are discussed: reducing load from engine operation and re-arranging preload conditions from the manufacturing process at the critical location of the cylinder head. Local design changes of the cylinder head and modification of pretension load in the cylinder head bolt were investigated using FE analysis to relieve load at the critical location during engine operation. Residual stress formed at the critical location during the manufacturing process is measured and heat treatment parameters are changed to re-arrange the distribution of residual stress. Results of FE analysis and experiments showed that thorough consideration of the manufacturing process is necessary to enhance the durability of the cylinder head.

Flow Control of Turbulent Wake Behind a Circular Cylinder Using a Self-adjusting Rod (자율 제어봉을 이용한 실린더 후류의 유동제어에 관한 연구)

  • Lim Hee Chang;Kam Dong Hyuk;Lee Sang Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.467-470
    • /
    • 2002
  • The offects of a small control rod (d=3mm) located near a main circular cylinder on the drag reduction and wake structure modification were investigated. The location of the small control rod mounted on a rod-like spring is self-adjusting according to the wake structure far optimal control of the flow around the main cylinder. The experiments were carried out at the Reynolds numbers based on the cylinder diameter (D=50mm) in the range $Re_{D}=1{\times}10^4{\~}6{\times}10^4$. Mean velocity and turbulent statistics were measured with varying the angle along the cylinder circumference ${\Theta}=15^{\circ},\;30^{\circ},\;45^{\circ}$ and the distance between the main and control rods L =0.7, 1. Compared with the bare cylinder, the main circular cylinder with the fixed and self-adjusting rods reduced drag coefficient by $10{\%}$ at the angle of ${\Theta}=45^{\circ}$. For the main cylinder with self-adjusting rot as the Reynolds numbers increase, the streamwise mean velocity is increased, however, the turbulence intensity is decreased. In addition, the control rods tested in this study are effective at higher Reynolds number than at lower Reynolds number.

  • PDF

NUMERICAL ANALYSIS OF THE FLOW AROUND A ROTARY OSCILLATING CIRCULAR CYLINDER USING UNSTEADY TWO DIMENSIONAL NAVIER-STOKES EQUATION (Navier-Stokes 식을 이용한 회전 진동하는 2차원 원형 실린더 주위 유동 해석)

  • Lee, M.K.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.8-14
    • /
    • 2011
  • Although the geometry of circular cylinder is simple, the flow is complicate because of the flow separation and vortex shedding. In spite of many numerical and experimental researches, the flow around a circular cylinder has not been clarified even now. It has been known that the unsteady vortex shedding from a circular cylinder can vibrate and damage a structure. Lock-on phenomenon is very important in the flow around an oscillating circular cylinder. The lock-on phenomenon is that when the oscillation frequency of the circular cylinder is at or near the frequency of vortex shedding from a stationary cylinder, the vortex shedding synchronizes with the cylinder motion. This phenomenon can be recognized by the spectral analysis of the lift coefficient history. At the lock-on region the vortex is shedding by the modulated frequency to the body frequency. However, the vortex is shedding by the mixed frequencies of natural shedding and forced body frequency in the region of non-lock-on. In this paper, it was analyzed the relation between the frequency of rotary oscillating circular cylinder and the vortex shedding frequency.

Torsional analysis of heterogeneous magnetic circular cylinder

  • Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.535-548
    • /
    • 2014
  • In this paper, the exact closed-form solutions for torsional analysis of heterogeneous magnetostrictive circular cylinder are derived. The cylinder is subjected to the action of a magnetic field produced by a constant longitudinal current density. It is also acted upon by a particular kind of shearing stress at its upper base. The rigidity of the cylinder is graded through its axial direction from one material at the lower base to another material at the upper base. The distributions of circumferential displacement and shear stresses are presented through the radial and axial directions of the cylinder. The influence of the magnetostrictive parameter is discussed. The effects of additional parameters are investigated.

Effect of Cylinder Aspect Ratio on Wake Structure Behind a Finite Circular Cylinder Located in an Atmospheric Boundary Layer (대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구)

  • Park, Cheol-U;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1821-1830
    • /
    • 2001
  • The flow around free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wakes behind a 2-D cylinder and a finite cylinder located in a uniform flow were measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency decreases and the vortex formation length increases compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly distinguished. Around the center of the wake, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit compared to that of uniform flow.