• Title/Summary/Keyword: a accelerometer

Search Result 1,046, Processing Time 0.025 seconds

Fabrication of six-beam accelerometer with self-eliminated off-axis sensitivity by summing circuit (합산회로를 통하여 타축감도가 자체상쇄된 6빔 가속도센서의 제조)

  • 심준환;김동권;이종현
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.2
    • /
    • pp.33-39
    • /
    • 1998
  • A six-beam accelerometer with self-compensated off-axis sensitivity was fabricated onthe selectively diffused (111)-oriented n/n$^{+}$/n silicon substrates by a unique porous silicon micromachining technique, which has self-stip characteristics and highly seletive formation of porous silicon layer during anodic reaction. Also, the characteristics of the fabricated accelerometer were investigated. The sensitivity of the acceleormeter added up outputs of three bridges through a summing circuit was 0.68 mV/g and the nonlinearity was less than 2% of the full scale output. The measured first resonant frequency was 4.236 kHz. When the outputs of three bridges were compared to summing output of bridges obtained through summing circuit, the normal output for Z-axis acceleration exhibited the same value s summing outputs of three bridges without reduction of sensitivity and thus the sensitivity decrease due to additional beam was compensated. Although a maximum off-axis sensitivity in one bridge of the accelerometer showed 17% of normal sensitivity, the off axis sensitivity obtained from summing output of three bridges decreased to 1.0%. Therefore, the self-elimination of off-axis sensitivity can be simply realized by obtaining the output of the sensor through summing circuit.t.

  • PDF

Experimental Study on the Rotational Speed Measuring Condition of a Gasoline Fuel Pump for a Small-Size Engine (소형엔진용 가솔린 연료펌프의 회전수 측정 조건에 대한 실험적 연구)

  • Lee, Jun-Sun;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3184-3189
    • /
    • 2010
  • To develop gasoline engine fuel pump, it is needed to measure the rotational speed of the pump. In general, because gasoline fuel pump is submerged in the fuel tank, it is difficult to measure the rotational speed directly. Currently, there are two popular methods measuring the rotational speed. One of them is using a piezoelectric accelerometer, and the other is using a current sensor. Originally, a piezoelectric accelerometer had been applied to measure the frequency of the motor vibration. A current sensor is measuring current frequency of the commutator slot. In this study, both the piezoelectric accelerometer and the current sensor have been applied on the fuel pump to calculate the rotational speed at the same time. As a result, the current sensor delivered highly accurate rotational speed information compared with that of the piezoelectric accelerometer. Especially, low rotational speed region, the current sensor shows very robust measuring characteristics. To measure the rotational speed within 1% error, the piezoelectric accelerometer needs to be set with less then 0.5Hz datum storage interval, and the current sensor needs to be set with less then 2.0Hz datum storage interval.

Piezoresistive-Structural Coupled-Field Analysis and Optimal Design for a High Impact Microaccelerometer (고충격 미소가속도계의 압저항-구조 연성해석 및 최적설계)

  • Han, Jeong-Sam;Kwon, Soon-Jae;Ko, Jong-Soo;Han, Ki-Ho;Park, Hyo-Hwan;Lee, Jang-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.132-138
    • /
    • 2011
  • A micromachined silicon accelerometer capable of surviving and detecting very high accelerations(up to 200,000 times the gravitational acceleration) is necessary for a high impact accelerometer for earth-penetration weapons applications. We adopted as a reference model a piezoresistive type silicon micromachined high-shock accelerometer with a bonded hinge structure and performed structural analyses such as stress, modal, and transient dynamic responses and sensor sensitivity simulation for the selected device using piezoresistive-structural coupled-field analysis. In addition, structural optimization was introduced to improve the performances of the accelerometer against the initial design of the reference model. The design objective here was to maximize the sensor sensitivity subject to a set of design constraints on the impact endurance of the structure, dynamic characteristics, the fundamental frequency and the transverse sensitivities by changing the dimensions of the width, sensing beams, and hinges which have significant effects on the performances. Through the optimization, we could increase the sensor sensitivity by more than 70% from the initial value of $0.267{\mu}V/G$ satisfying all the imposed design constraints. The suggested simulation and optimization have been proved very successful to design high impact microaccelerometers and therefore can be easily applied to develop and improve other piezoresistive type sensors and actuators.

Development of Gait Monitoring System Based on 3-axis Accelerometer and Foot Pressure Sensors (3축 가속도 센서와 족압 감지 시스템을 활용한 보행 모니터링 시스템 개발)

  • Ryu, In-Hwan;Lee, Sunwoo;Jeong, Hyungi;Byun, Kihoon;Kwon, Jang-Woo
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.199-206
    • /
    • 2016
  • Most Koreans walk having their toes in or out, because of their sedentary lifestyles. In addition, using smartphone while walking makes having a desirable walking posture even more difficult. The goal of this study is to make a simple system which easily analyze and inform any person his or her personal walking habit. To discriminate gait patterns, we developed a gait monitoring system using a 3-axis accelerometer and a foot pressure monitoring system. The developed system, with an accelerometer and a few pressure sensors, can acquire subject's foot pressure and how tilted his or her torso is. We analyzed the relationship between type of gate and sensor data using this information. As the result of analysis, we could find out that statistical parameters like standard deviation and root mean square are good for discriminating among torso postures, and k-nearest neighbor algorithm is good at clustering gait patterns. The developed system is expected to be applicable to medical or athletic fields at a low price.

Speed Estimation of Moving Object using GPS and Accelerometer (GPS와 가속도계를 이용한 이동 물체의 속도 추정)

  • Yeom, Jeong-Nam;Lee, Geum-Boon;Park, Jong-Min;Cho, Beom-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.425-428
    • /
    • 2008
  • To overcome the limitation of tracking speed on signal-shaded area and the discontinuity of GPS, we present a system which estimates the speed of moving object using GPS and accelerometer. This system is designed to correct accelerometer's noises which are caused by vibration and impact to the object and errors of itself, from the navigation information of GPS receiver and accelerometer which are installed to moving object. And using this information, it estimates the speed of moving object on GPS signal-shaded area to complement discontinuity of GPS navigation information. We designed Kalman Filter structure using GPS and accelerometer to apply this system, and verify that the system can estimate object's speed on GPS signal-shaded area. Finally, we present the possibilities applying to telematics systems like automatic navigation system.

  • PDF

Recognition of Falls and Activities of Daily Living using Tri-axial Accelerometer and Bi-axial Gyroscope

  • Park, Geun-chul;Kim, Soo-Hong;Kim, Jae-hyung;Shin, Beum-joo;Jeon, Gye-rok
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.79-85
    • /
    • 2016
  • This paper proposes a threshold-based fall recognition algorithm to discriminate between falls and activities of daily living (ADL) using a tri-axial accelerometer and a bi-axial gyroscope sensor mounted on the upper sternum. The experiment was executed ten times according to the proposed experimental protocol. The output signals of the tri-axial accelerometer and the bi-axial gyroscope were measured during eight falls and eleven ADL action sequences. The threshold values of the signal vector magnitude (SVM_Acc), angular velocity (${\omega}_{res}$), and angular variation (${\theta}_{res}$) parameter were calculated using MATLAB. From the preliminary study, three thresholds (TH1, TH2, and TH3) were set so that the falls could be distinguished from ADL. When the parameter SVM_Acc is greater than 2.5 g (TH1), ${\omega}_{res}$ is greater than 1.75 rad/s (TH2), and ${\theta}_{res}$ is greater than 0.385 rad (TH3), these action sequences are recognized as falls. If at least one or more of these conditions is not satisfied, the sequence is classified as ADL.

Changes in the Recognition Rate of Kodály Learning Devices using Machine Learning (머신러닝을 활용한 코다이 학습장치의 인식률 변화)

  • YunJeong LEE;Min-Soo KANG;Dong Kun CHUNG
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.2 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • Kodály hand signs are symbols that intuitively represent pitch and note names based on the shape and height of the hand. They are an excellent tool that can be easily expressed using the human body, making them highly engaging for children who are new to music. Traditional hand signs help beginners easily understand pitch and significantly aid in music learning and performance. However, Kodály hand signs have distinctive features, such as the ability to indicate key changes or chords using both hands and to clearly represent accidentals. These features enable the effective use of Kodály hand signs. In this paper, we aim to investigate the changes in recognition rates according to the complexity of scales by creating a device for learning Kodály hand signs, teaching simple Do-Re-Mi scales, and then gradually increasing the complexity of the scales and teaching complex scales and children's songs (such as "May Had A Little Lamb"). The learning device utilizes accelerometer and bending sensors. The accelerometer detects the tilt of the hand, while the bending sensor detects the degree of bending in the fingers. The utilized accelerometer is a 6-axis accelerometer that can also measure angular velocity, ensuring accurate data collection. The learning and performance evaluation of the Kodály learning device were conducted using Python.

Gait Characteristics of Sasang Constitution with 3-Axis Accelerometer-Based Gait Analysis (3축 가속도계를 이용한 사상체질별 보행특성 연구)

  • Lee, Dongkyu;Jeong, Seoyoon;Kim, Lakhyung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.31 no.4
    • /
    • pp.225-233
    • /
    • 2020
  • Objectives: This study aimed to reveal the gait characteristics of each Sasang constitution by examining the differences in gait analysis indicators using a 3-axis accelerometer. Methods: Ninety-one participants were classified through the TS-QSCD (Two-Step Questionnaire for Sasang Constitution Diagnosis) method and gait analysis was performed using a 3-Axis Accelerometer (G-WALK. BTS Bioengineering, Italy). Gait analysis in returning to the 6-meter turnaround point and 6-minute walking test were performed. The differences in the gait analysis index values were analyzed between each constitution. Results: The gait analysis of 91 subjects (37 Taeumin, 37 Soyangin, and 17 Soeumin), showed that the percent stride length/height in the Soyangin subjects was significantly higher than that of the Taeeumin and Soeuminin subjects in the spatiotemporal walking variables (p<0.05). Stride length also showed the widest tendency in the Soyangin subjects (p=0.05). In the kinesiological analysis, the range of pelvic obliquity angles in the Soeumin subjects was significantly wider than that of the Taeumin and Soyangin subjects (p<0.05). In the six-minute walking test, the Soyangin subjects walked the farthest at 309.41±35.23 m (p=0.064). Conclusions: In a comparison of the gait characteristics for each Sasang constitution using a three-dimensional accelerometer, the stride width of the Soyangin subjects was the widest compared to the Taeeumin, and Soeumin subjects, and Soyangin's walking speed showed a faster tendency than that of the Taeeumin and Soeumin subjects.

Electrode Force Characteristics of Micro Servogun (마이크로 서보건의 가압 특성)

  • 임창식;박승규;장희석
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.159-161
    • /
    • 2003
  • Electrode movement signal has been widely used in resistance spot welding system This study is to compare accelerometer signal with gap sensor signal in servo gun system. This study propose that accelerometer output signal is a useful technique of quality monitoring in resistance welding processes.

  • PDF