• 제목/요약/키워드: a Halo

검색결과 517건 처리시간 0.025초

HALO EMISSION OF THE CAT’S EYE NEBULA, NGC 6543: SHOCK EXCITATION BY FAST STELLAR WINDS

  • Hyung, Siek;Lee, Seong-Jae
    • Journal of Astronomy and Space Sciences
    • /
    • 제19권3호
    • /
    • pp.173-180
    • /
    • 2002
  • Images taken with the Chandra X-ray telescope have for the the first time revealed the central, wind-driven, hot bubble (Chu et al. 2001), while Hubble Space Telescope (HST) WFPC2 images of the Cat's Eye nebula, NGC 6543, show that the temperature of the halo region of angular radius ~ 20", is much higher than that of the inner bright H II region. With the coupling of a photoionization calculation to a hydrodynamic simulation, we predict the observed 〔O III〕 line intensities of the halo region with the same O abundance as in the core H II region: oxygen abundance gradient does not appear to exist in the NGC 6543 inner halo. An interaction between a (leaky) fast stellar wind and halo gas may cause the higher excitation temperatures in the halo region and the inner hot bubble region observed with the Chandra X-ray telescope.

Halo interactions in the Horizon run 4 simulation

  • L'Huillier, Benjamin;Park, Changbom;Kim, Juhan
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.46-46
    • /
    • 2014
  • Interactions such as mergers and flybys play a fundamental role in shaping galaxy morphology. We used the Horizon Run 4 cosmological N-body simulations to study the frequency and the type of halo interactions as a function of the environment, the separation p, the mass ratio q, and the target halo mass. We defined targets as haloes more massive than 10^11 Msun/h, and a target is interacting if it is located within the virial radius of a neighbour halo more massive than 0.4 times the target mass. We find that the interaction rate as a function of time has a universal shape for different halo mass and large-scale density, with an increase and saturation. Larger density yield steeper slopes and larger final interaction rates, while larger masses saturate later. Most interactions happen at large-scale density contrast ${\delta}$ about 10^3, regardless of the redshift. We also report the existence of two modes of interactions in the (p,q) plane, reflecting the nature (satellite or main halo) of the target halo. These two trends strongly evolve with redshift, target mass, and large-scale density. Interacting pairs have similar spins parameters and aligned spins, with radial trajectories, and prograde encounters for non-radial trajectories. The satellite trajectories become less and less radial as time proceed. This effect is stronger for higher-mass target, but independent of the large-scale density.

  • PDF

On the Use of the Number Count of Blue Horizontal-Branch Stars to Infer the Dominant Building Blocks of the Milky Way Halo

  • Chung, Chul;Lee, Young-Wook;Pasquato, Mario
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.57.3-57.3
    • /
    • 2015
  • The formation of the Milky Way stellar halo is thought to be the result of merging and accretion of building blocks such as dwarf galaxies and massive globular clusters. Recently, Deason et al. (2015) suggested that the Milky Way outer halo formed mostly from big building blocks, such as dwarf spheroidal galaxies, based on the similar number ratio of blue straggler (BS) stars to blue horizontal-branch (BHB) stars. Here we demonstrate, however, that this result is seriously biased by not taking into detailed consideration on the formation mechanism of BHB stars from helium enhanced second-generation population. In particular, the high BS-to-BHB ratio observed in the outer halo fields is most likely due to a small number of BHB stars provided by GCs rather than to a large number of BS stars. This is supported by our dynamical evolution model of GCs which shows preferential removal of first generation stars in GCs. Moreover, there are sufficient number of outer halo GCs which show very high BS-to-BHB ratio. Therefore, the BS-to-BHB number ratio is not a good indicator to use in arguing that more massive dwarf galaxies are the main building blocks of the Milky Way outer halo. Several lines of evidence still suggest that GCs can contribute a signicant fraction of the outer halo stars.

  • PDF

HORIZON RUN 4 SIMULATION: COUPLED EVOLUTION OF GALAXIES AND LARGE-SCALE STRUCTURES OF THE UNIVERSE

  • KIM, JUHAN;PARK, CHANGBOM;L'HUILLIER, BENJAMIN;HONG, SUNGWOOK E.
    • 천문학회지
    • /
    • 제48권4호
    • /
    • pp.213-228
    • /
    • 2015
  • The Horizon Run 4 is a cosmological N-body simulation designed for the study of coupled evolution between galaxies and large-scale structures of the Universe, and for the test of galaxy formation models. Using 63003 gravitating particles in a cubic box of Lbox = 3150 h−1Mpc, we build a dense forest of halo merger trees to trace the halo merger history with a halo mass resolution scale down to Ms = 2.7 × 1011h−1M. We build a set of particle and halo data, which can serve as testbeds for comparison of cosmological models and gravitational theories with observations. We find that the FoF halo mass function shows a substantial deviation from the universal form with tangible redshift evolution of amplitude and shape. At higher redshifts, the amplitude of the mass function is lower, and the functional form is shifted toward larger values of ln(1/σ). We also find that the baryonic acoustic oscillation feature in the two-point correlation function of mock galaxies becomes broader with a peak position moving to smaller scales and the peak amplitude decreasing for increasing directional cosine μ compared to the linear predictions. From the halo merger trees built from halo data at 75 redshifts, we measure the half-mass epoch of halos and find that less massive halos tend to reach half of their current mass at higher redshifts. Simulation outputs including snapshot data, past lightcone space data, and halo merger data are available at http://sdss.kias.re.kr/astro/Horizon-Run4.

적응형 언샤프 마스킹을 위한 지역적 밝기 기반의 가중치 맵 생성 기법 (A Weight Map Based on the Local Brightness Method for Adaptive Unsharp Masking)

  • 황태훈;김진헌
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.821-828
    • /
    • 2018
  • Image Enhancement is used in various applications. Among them, unsharp masking methods can improve the contrast with a simple operation. However, it has problems of noise enhancement and halo effect caused by the use of a single filter. To solve this problems, adaptive processing using multi-scale and bilinear filters is being studied. These methods are effective for improving the halo effect, but it require a lot of calculation time. In this paper, we want to simplify adaptive filtering by generating a weight map based on local brightness. This weight map enables adaptive processing that eliminates the halo effect through a single multiplication operation. Through experiments, we confirmed the suppression of the halo effect through the result image of the proposed algorithm and existing algorithm.

A STUDY ON THE INITIAL MASS FUNCTION OF HALO STARS

  • LEE SANG-GAK
    • 천문학회지
    • /
    • 제26권2호
    • /
    • pp.141-152
    • /
    • 1993
  • The sample of sub dwarfs are selected from LHS catalogue on the bases of the reduced proper motion diagram utilizing Chui criteria, and confirmed with the available photometric and/or kinematic data. Among them, 20 sub dwarfs have trigonometric parallaxes with accuracy better than $20\%$. The color­absolute magnitude relation is derived with them. By adopting this color-magnitude relation and $V/V_m$ method, we have derived the sub dwarf luminosity function over the absolute magnitude range of $M_v$= 4.5 and 9.5. This halo luminosity function is consistent with that of Eggen(1987). By adopting the available mass-luminosity relations for halo stars, we have found that the halo IMF is steeper than disk IMFs of Scalo(1986) and Salpter(1955) in this small mass region.

  • PDF

Chemical and Kinematic Properties of the Galactic Halo System

  • Jung, Jaehun;Lee, Young Sun;Kim, Young Kwang
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.80.2-80.2
    • /
    • 2017
  • We present chemical and kinematic properties of the Milky Way's halo system investigated by carbon-enhanced metal-poor (CEMP) stars identified from the Sloan Digital Sky Survey. We first map out fractions of CEMP-no stars (those having no over-abundances of neutron-capture elements) and CEMP-s stars (those with over-enhancements of the s-process elements) in the inner- and outer-halo populations, separated by their spatial distribution of carbonicity ([C/Fe]). Among CEMP stars, the CEMP-no and CEMP-s objects are classified by different levels of absolute carbon abundances, A(C). We investigate characteristics of rotation velocity and orbital eccentric for these subclasses for each halo population. Any distinct kinematic features identified between the two categories in each halo region provide important clues on the origin of the dichotomy of the Galactic halo.

  • PDF

Comparison of Global Optimization Methods for Insertion Maneuver into Earth-Moon L2 Quasi-Halo Orbit Considering Collision Avoidance

  • Lee, Sang-Cherl;Kim, Hae-Dong;Yang, Do-Chul;Cho, Dong-Hyun;Im, Jeong-Heum;No, Tae-Soo;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권3호
    • /
    • pp.267-280
    • /
    • 2014
  • A spacecraft placed in an Earth-Moon L2 quasi-halo orbit can maintain constant communication between the Earth and the far side of the Moon. This quasi-halo orbit could be used to establish a lunar space station and serve as a gateway to explore the solar system. For a mission in an Earth-Moon L2 quasi-halo orbit, a spacecraft would have to be transferred from the Earth to the vicinity of the Earth-Moon L2 point, then inserted into the Earth-Moon L2 quasi-halo orbit. Unlike the near Earth case, this orbit is essentially very unstable due to mutually perturbing gravitational attractions by the Earth, the Moon and the Sun. In this paper, an insertion maneuver of a spacecraft into an Earth-Moon L2 quasi-halo orbit was investigated using the global optimization algorithm, including simulated annealing, genetic algorithm and pattern search method with collision avoidance taken into consideration. The result shows that the spacecraft can maintain its own position in the Earth-Moon L2 quasi-halo orbit and avoid collisions with threatening objects.

SUSSING MERGER TREES: THE IMPACT OF HALO MERGER TREES ON GALAXY PROPERTIES IN A SEMI-ANALYTIC MODEL

  • LEE, JAEHYUN;YI, SUKYOUNG
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.473-474
    • /
    • 2015
  • Halo merger trees are the essential backbone of semi-analytic models for galaxy formation and evolution. Srisawat et al. (2013) show that different tree building algorithms can build different halo merger histories from a numerical simulation for structure formation. In order to understand the differences induced by various tree building algorithms, we investigate the impact of halo merger trees on a semi-analytic model. We find that galaxy properties in our models show differences between trees when using a common parameter set. The models independently calibrated for each tree can reduce the discrepancies between global galaxy properties at z=0. Conversely, with regard to the evolutionary features of galaxies, the calibration slightly increases the differences between trees. Therefore, halo merger trees extracted from a common numerical simulation using different, but reliable, algorithms can result in different galaxy properties in the semi-analytic model. Considering the uncertainties in baryonic physics governing galaxy formation and evolution, however, these differences may not necessarily be significant.

On the physical origins for the two-halo conformity

  • Seo, Seongu;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.74.1-74.1
    • /
    • 2017
  • The two-halo conformity is that if a central galaxy in a dark matter halo is quenched in star formation, the central galaxies in other neighboring halos (within ~ 4 Mpc) even with no causal contact seem conformed to be quenched. The galactic similarity ranging far beyond the virial radius of each dark matter halo cannot be explained by known environmental effects (ram pressure, tidal interaction, etc.). Here, using a cosmological hydrodynamic simulation, we put forward new physical origins for the phenomenon; the back-splash galaxies scenario and the halo assembly bias scenario. We discuss the relative importance of the two explanations on a quantitative basis.

  • PDF