• Title/Summary/Keyword: a Halo

Search Result 516, Processing Time 0.023 seconds

LUMINOSITY AND MASS FUNCTIONS FOR HALO STARS. I. PROPERTIES OF HALO STARS

  • Lee, Sang-Gak
    • Publications of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.197-212
    • /
    • 1997
  • The general photometric, spectroscopic, and kinematic properties of the late type halo stars are investigated from a sample of known true halo stars. Halo stars are distributed in a lower left region of infrared (J-H) vs (H-K) color-color diagram, which is recomfirmed to be useful for selection of halo stars. They move with average velocity components of 9 km/sec, -14 km/sec, and 5 km/sec in U, V, and W directions respectively. They are distributed seperately from disk stars in a diagram of metallicity index, CaH1/TiO5 vs (R-I).

  • PDF

LOCAL MASS DENSITY OF HALO STARS

  • Lee, Sang-Gak
    • Journal of The Korean Astronomical Society
    • /
    • v.18 no.2
    • /
    • pp.70-78
    • /
    • 1985
  • From the kinematically unbiased sample of halo stars, the local mass density of halo dwarfs is estimated as $6.0{\sim}6.3{\times}10^{-4}m_{\odot}/pc^3$ by adopting a color-magnitude relation and a mass-luminosity relation. The derived halo mass density is not much different from the results of previous studies, which were derived from the kinematically biased sample of halo stars. Therefore it is confirmed that the local mass density of halo stars is far less than that required by Ostriker-Peebles to stabilize the galactic disk against barlike instabilities.

  • PDF

A SIMPLE DISK-HALO MODEL FOR THE CHEMICAL EVOLUTION OF OUR GALAXY

  • Lee, S.W.;Ann, H.B.
    • Journal of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.55-71
    • /
    • 1981
  • On the basis of observational constraints, particularly the relationship between metal abundance and cumulative stellar mass, a simple two-zone disk-halo model for the chemical evolution of our Galaxy was investigated, assuming different chemical processes in the disk and halo and the infall rates of the halo gas defined by the halo evolution. The main results of the present model calculations are: (i) The halo formation requires more than 80% of the initial galactic mass and it takes a period of $2{\sim}3{\times}10^9$ yrs. (ii) The halo evolution is divided into two phases, a fast collapse phase ($t=2{\sim}3{\times}10^8$ yrs) during which period most of the halo stars $({\sim}95%)$ are formed and a later slow collapse phase which is characterized by the chemical enrichment due to the inflow of external matter to the halo. (iii) The disk evolution is also divided into two phases, an active disk formation phase with a time-dependent initial mass function (IMF) up to $t{\approx}6{\times}10^9$ yrs and a later steady slow formation phase with a constant IMF. It is found that at the very early time $t{\approx}5{\times}10^8$ yrs, the metal abundance in the disk is rapidly increased to ${\sim}1/3$ of the present value but the total stellar mass only to ${\sim}10%$ of the present value, finally reaching about 80% of the present values toward the end of the active formation phase.

  • PDF

THE INITIAL CONDITIONS AND EVOLUTION OF ISOLATED GALAXY MODELS: EFFECTS OF THE HOT GAS HALO

  • Hwang, Jeong-Sun;Park, Changbom;Choi, Jun-Hwan
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.1-32
    • /
    • 2013
  • We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In addition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 N-body/hydrodynamic simulation code, paying particular attention to the effects of the gaseous halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component, particularly in the gas dissipation and the star formation activity in the disk. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. Whereas the SFRs in the models with a gas halo, depending on the density profile and the total mass of the gas halo, emerge to be either relatively flat throughout the simulations or increasing until the middle of the run (over a gigayear) and then decreasing to the end. The models with the more centrally concentrated NFW gas halo show overall higher SFRs than those with the isothermal gas halo of the equal mass. The gas accretion from the halo onto the disk also occurs more in the models with the NFW gas halo, however, this is shown to take place mostly in the inner part of the disk and not to contribute significantly to the star formation unless the gas halo has very high density at the central part. The rotation of a gas halo is found to make SFR lower in the model. The SFRs in the runs including galactic winds are found to be lower than those in the same runs but without winds. We conclude that the effects of a hot gaseous halo on the evolution of galaxies are generally too significant to be simply ignored. We also expect that more hydrodynamical processes in galaxies could be understood through numerical simulations employing both gas disk and gas halo components.

The Spin-Orbit Alignment of Dark Matter Halo Pairs: Dependence on the Halo Mass and Environment

  • An, Sung-Ho;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.35.1-35.1
    • /
    • 2019
  • We present a statistical analysis on the spin-orbit alignment of dark matter halo pairs in cosmological simulations. The alignment is defined as the angular concurrence between the halo spin vector (${\vec{S}}$) and the orbital angular momentum vector (${\vec{L}}$) of the major companion. We identify interacting halo pairs with the mass ratios from 1:1 to 1:3, with the halo masses of 10.8 < $Log(M_{halo}/M_{sun}$) < 13.0, and with the separations smaller than a sum of their virial radii ($R_{12}<R_{1,vir}+R_{2,vir}$). Based on the total energy ($E_{12}$), the pairs are classified into flybys ($E_{12}$ > 0) and mergers ($E_{12}{\leq}0$). By measuring the angle (${\theta}_{SL}$) between ${\vec{S}}$ and ${\vec{L}}$, we confirm a strong spin-orbit alignment signal such that the halo spin is preferentially aligned with the orbital angular momentum of the major companion. We find that the signal of the spin-orbit alignment for the flyby is weaker than that for the merger. We also find an unexpected excess signal of the spin-orbit alignment at $cos{\theta}_{SL}{\sim}0.25$. Both the strength of the spin-orbit alignment and the degree of the excess depend only on the environment. We conclude that the halo spin is determined by the accretion in a preferred direction set by the ambient environment.

  • PDF

Reactivity of 7-Dithiocarboxy-imidazo [2,1-b]thiazolium-betnine with Aliphatic Alkylating Agents

  • Song, Jung-Wha;Suh, Myung-Eun;Yoo, Kyung-Ho;Park, Sang-Woo
    • Archives of Pharmacal Research
    • /
    • v.12 no.1
    • /
    • pp.17-21
    • /
    • 1989
  • We have reported earlier on the reactivity of 7-dithiocarboxy-3-phenyl-5,6-dihydro imidazo[2,1-b]thiazolium-betaine with several para-substituted phenacyl bromides. In this work reactions of 7-dithiocarboxy-3-phenyl(or methyl)-5,6-dihydro imidazo[2,1-b]thiazolium-betaine with a series of aliphatic alkylating agents of ${\alpha}$ -halo ketone,${\gamma}$-halo koto ester and ${\alpha}$ -halo ester were examined for the similar purpose. In case of ${\alpha}$-halo ketone or ${\gamma}$-halo koto ester such as ${\alpha}$ -chloro acetone or ethyl 4-chloro acetoacetate new biheterocyclic compound was obtained via ring transformation reaction. However, reaction of the betaine with methyl(or ethyl) bromoacetate used as a ${\alpha}$-halo ester, gave, in-stead, S-alkylated quarternary ammonium salt.

  • PDF

Disruption time scale of merged halos in a dense cluster environment

  • Shin, Jihye;Taylor, James E.;Peng, Eric
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.60.1-60.1
    • /
    • 2016
  • To obtain a reliable estimate of the cold dark matter (CDM) substructure mass function in a dense cluster environment, one needs to understand how long a merged halo can survive within the host halo. Measuring disruption time scale of merged halos in a dense cluster environment, we attempt to construct the realistic CDM mass function that can be compared with stellar mass functions to get a stellar-to-halo mass ratio. For this, we performed a set of high-resolution simulations of cold dark matter halos with properties similar to the Virgo cluster. Field halos outside the main halo are detected using a Friend-of-Friend algorithm with a linking length of 0.02. To trace the sub-halo structures even after the merging with the main halo, we use their core structures that are defined to be the most 10% bound particles.

  • PDF

The evolution of dark matter halo profiles in a cosmological context

  • Park, Jinwoo;Choi, Hoseung;Yi, Sukyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.73.3-73.3
    • /
    • 2017
  • Environment has a significant impact on the evolution of dark halo profiles. We used a cosmological N-body simulation based on WMAP5 cosmology to study environmental effects on halo profiles. Host haloes located in sparse regions are highly concentrated, and more massive haloes have higher concentration index. This is because mass accretion affects only the outer part of the halo and consequently increase the virial radius having no effect on the scale radius. Conversely, host haloes located in dense regions have low concentration index. This is because frequent mergers affect even the inner part of the halo. So, scale radius increases with the growth of virial radius. Evolutions of subhalo profiles are essentially different from those of host haloes because subhaloes undergo tidal stripping. The stripping begins once a subhalo approaches closer than ~3 virial radii of the host halo. During the stripping, the inner part of the subhalo keep following NFW profile, but the mass of the outer part gradually decreases. As a result, when the subhalo reaches the pericenter of its host, only about inner 30% of the subhalo follows the NFW profile.

  • PDF

$\alpha$-halo formation in semi-solid state processed hypereutectic Al-Si alloy (반고상 가공과 공정 Al-Si 합금에서 $\alpha$-halo의 형성)

  • 김인준;김도향
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.183-195
    • /
    • 1997
  • The micorstructural characteristics, particularly $\alpha$-halo formation, in semi-solid state processed hypereutectic Al-Si alloy was investigated. The microstructural changes during reheating of wedge type mold cast ingot, hot-rolled sheet, and Si particulate reinforced Al composite was compared with those occurred during stirring of semi-solid state hypereutectic alloy. In the case of semi-solid state reheating of wedge type ingot and hot-rolled sheet, fine particles of Si as well as $\alpha$-halo formed after heat treatment. Although there seemed to be no coarsening with variations of holding time, the region of $\alpha$-halo decreased due to homogenization. Nucleation and recrystallization was accelerated with the addition of alloying elements during hot rolling resulting in primary Si particle size decrease and $\alpha$-halo formation. In the case of extruded specimens, very little morphological change of reinforcing Si particles was observed. Almost no $\alpha$-halo formed during reheating because of the oxide film formed on the reinforcing Si particles which acted as a diffusion barrier between the matrix and the primary Si particles.

  • PDF

Auto-detection of Halo CME Parameters as the Initial Condition of Solar Wind Propagation

  • Choi, Kyu-Cheol;Park, Mi-Young;Kim, Jae-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.315-330
    • /
    • 2017
  • Halo coronal mass ejections (CMEs) originating from solar activities give rise to geomagnetic storms when they reach the Earth. Variations in the geomagnetic field during a geomagnetic storm can damage satellites, communication systems, electrical power grids, and power systems, and induce currents. Therefore, automated techniques for detecting and analyzing halo CMEs have been eliciting increasing attention for the monitoring and prediction of the space weather environment. In this study, we developed an algorithm to sense and detect halo CMEs using large angle and spectrometric coronagraph (LASCO) C3 coronagraph images from the solar and heliospheric observatory (SOHO) satellite. In addition, we developed an image processing technique to derive the morphological and dynamical characteristics of halo CMEs, namely, the source location, width, actual CME speed, and arrival time at a 21.5 solar radius. The proposed halo CME automatic analysis model was validated using a model of the past three halo CME events. As a result, a solar event that occurred at 03:38 UT on Mar. 23, 2014 was predicted to arrive at Earth at 23:00 UT on Mar. 25, whereas the actual arrival time was at 04:30 UT on Mar. 26, which is a difference of 5 hr and 30 min. In addition, a solar event that occurred at 12:55 UT on Apr. 18, 2014 was estimated to arrive at Earth at 16:00 UT on Apr. 20, which is 4 hr ahead of the actual arrival time of 20:00 UT on the same day. However, the estimation error was reduced significantly compared to the ENLIL model. As a further study, the model will be applied to many more events for validation and testing, and after such tests are completed, on-line service will be provided at the Korean Space Weather Center to detect halo CMEs and derive the model parameters.