• Title/Summary/Keyword: ZrO_2$

Search Result 2,330, Processing Time 0.028 seconds

Sintering Behavior of Al2O3-15v/o ZrO2(+3m/o Y2O3) Ceramics Prepared by Precipitation Method (침전법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 세라믹스의 소결거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.423-437
    • /
    • 1989
  • Al2O3/ZrO2 composites were prepared by precipitation method using Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O as starting materials and NH4OH as a precipitation agent. Al2O3/ZrO2 composites(series A) were prepared by mixing Al2O3 powder obtained by single precipitation method with ZrO2(+3m/o Y2O3) powder obtained by co-predipitation method. Al2O3/ZrO2 composites (series B) were prepared by co-precipitation method using the three starting materials. In all cases, the composition was controlled as Al2O3-15v/o ZrO2(+3m/o Y2O3). The composites of series A showed higher final relative densities than those of series B and tetagonal ZrO2 in all cases was retained to about 95% at room temperature. ZrO2 particles were coalesced more rapidly in grain boundary of Al2O3 than within Al2O3 grain. ZrO2 particles were located at 3-and 4-grain junction of Al2O3 and limited the grain growth of Al2O3. It was observed that MgO contributed to densification of Al2O3 but limited grain growth of Al2O3 by MgO was not remarkable. In all Al2O3/ZrO2 composites, exaggerated grain growth of Al2O3 was not observed and Al2O3/ZrO2 composites were found to have homogeneous microstructures.

  • PDF

Microstructure characterization and mechanical properties of Cr-Ni/ZrO2 nanocomposites

  • Sevinc, O zlem;Diler, Ege A.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.313-323
    • /
    • 2022
  • The microstructure and mechanical properties of Cr-Ni steel and Cr-Ni steel-matrix nanocomposites reinforced with nano-ZrO2 particles were investigated in this study. Cr-Ni steel and Cr-Ni/ZrO2 nanocomposites were produced using a combination of high-energy ball milling, pressing, and sintering processes. The microstructures of the specimens were analyzed using EDX and XRD. Compression and hardness tests were performed to determine the mechanical properties of the specimens. Nano-ZrO2 particles were effective in preventing chrome carbide precipitate at the grain boundaries. While t-ZrO2 was detected in Cr-Ni/ZrO2 nanocomposites, m-ZrO2 could not be found. Few α'-martensite and deformation bands were formed in the microstructures of Cr-Ni/ZrO2 nanocomposites. Although nano-ZrO2 particles had a negligible impact on the strength improvement provided by deformation-induced plasticity mechanisms in Cr-Ni/ZrO2 nanocomposites, the mechanical properties of Cr-Ni steel were significantly improved by using nano-ZrO2 particles. The hardness and compressive strength of Cr-Ni/ZrO2 nanocomposite were higher than those of Cr-Ni steel and enhanced as the weight fraction of nano-ZrO2 particles increased. Cr-Ni/ZrO2 nanocomposite with 5wt.% nano-ZrO2 particles had almost twofold the hardness and compressive strength of Cr-Ni steel. The nano-ZrO2 particles were considerably more effective on particle-strengthening mechanisms than deformation-induced strengthening mechanisms in Cr-Ni/ZrO2 nanocomposites.

Microstructures and Densification Behaviors of $Al_2O_3-ZrO_2(ZTA)$ Composites Fabricated by a Surface-induced Coating (표면-유기 코팅에 의해 합성한 $Al_2O_3-ZrO_2(ZTA)$ 복합체의 미세구조와 소결거동)

  • 장현명;문종하;김광수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Al2O3-ZrO2(ZTA) composites were fabricated by a surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3. The fabricated composites were characterized by a uniform spatial distribution of the dispersed ZrO2 phase and by the absence of large ZrO2 grains throughout the Al2O3 matrix. The fracture toughness (KIC) and the bending strength of ZTA composites sintered at 1$600^{\circ}C$, respectively, were 5.6 MPa.m1/2 (for 20 wt% ZrO2) and 600 MPa (for 15wt% ZrO2). The fraction of tetragonal ZrO2 phase decreases as the total content of ZrO2, suggesting that both the stress-induced tlongrightarrowm transformation and the microcrack nucleation contribute to the toughening of the ZTA composites fabricated by the surface-induced coating.

  • PDF

Dispersion of ZrO2 by Coprecipitation in Al2O3/ZrO2Ceramics (Al2O3/ZrO2요업체에서 공침에 의한 ZrO2입자의 분산)

  • Cho, Myung-Je;Choi, Jung-Lim;Park, Jung-Kwon;Hwang, Kyu-Hong;Lee, Jong-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.704-709
    • /
    • 2002
  • To improve the mechanical properties of $Al_2$O$_3$/ZrO$_2$composites, the homogeneous dispersion of ultra low size ZrO$_2$ particles in $Al_2$O$_3$ceramics have been controlled by coprecipitation method. In case of mechanical mixing of ZrO$_2$ powders with $Al_2$O$_3$, homogeneous dispersion and controlling the ZrO$_2$ size were relatively difficult due to high sintering temperature. So nanosized Zr hydroxide was coprecipitated from ZrOCl$_2$/Y(NO$_3$)$_3$ solution with commercial sub-micron sized $\alpha$-alumina (Sumitomo : AES-11(0.4 ${\mu}{\textrm}{m}$)) and high purity ultra low sized $\alpha$-alumina (Taimei Chemical (0.22 ${\mu}{\textrm}{m}$)) for low temperature sintering. By this partial coprecipitation method, relatively low sized ZrO$_2$ dispersion in $Al_2$O$_3$/ZrO$_2$ composites was achieved at 150$0^{\circ}C$-1$600^{\circ}C$ of sintering temperature range and their mechanical properties were measured.

Properties of Al2O3-15v/o ZrO2(+3m/o Y2O3) Powder Prepared by Co-Precipitation Method (공침법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 분말의 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.210-220
    • /
    • 1989
  • The properties of the powder of Al2O3-15v/o ZrO2(+3m/o Y2O3) system prepared by co-precipitation method at the pH values of 7, 9, 10 and 11 were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Zirconium hydroxide decreased the specific surface area of aluminum hydroxide of AlOOH type, while increased the specific surface area of aluminum hydroxide of Al(OH)3 type, and formed co-network structure of Al-O-Zr type with the aluminum hydroxides. The rate of transition to $\alpha$-Al2O3 from co-precipitated materials occurred in the order of 7≒10, 9 and 11 of pH values. Al2O3 and ZrO2 interacted to bring about coupled grain growth, and the growth of ZrO2 crystallite size rapidly occurred within $\theta$-Al2O3 matrix. Segregation did not occur in the system Al2O3-15v/o ZrO2(+3m/o Y2O3) and Y2O3 acted as a stabilizer to ZrO2. The lattice strain of tetragonal ZrO2 was increased by the constraint effect of Al2O3 matrix.

  • PDF

Fabrication of Al2O3/ZrO2Ceramics by the Polymerization Dispersion Process (ZrO2의 고분자화 분산법을 이용한 Al2O3/ZrO2요업체의 제조)

  • Cho, Myung-Je;Hwang, Kyu-Hong;Lee, Jong-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.284-288
    • /
    • 2004
  • To improve mechanical properties of $Al_2$O$_3$/ZrO$_2$composites have been controlled dispersion of ultra low size ZrO$_2$ particles in $Al_2$O$_3$ ceramics by polymeric precursor method (Pechini process). In case of coprecipitation or mechanical mixing of ZrO$_2$ powders with $Al_2$O$_3$, homogeneous dispersion and controlling the ZrO$_2$ size were relatively difficult due to high sintering temperature. So the polyesterization process of Zr/Y(NO$_3$)$_3$-citric acid solution in ethylene glycol with the commercial sub-micron sized o(-alumina powder (Sumitomo AES-11(0.4 ${\mu}{\textrm}{m}$)) was adopted in order to obtain homogeneous dispersion of ZrO$_2$ in A1203. By this partial polyesterization process, the homogeneous dispersion of relatively low sized ZrO$_2$in $Al_2$O$_3$/ZrO$_2$composites was achieved at 1450∼1$600^{\circ}C$ of sintering temperature range and their mechanical properties were measured.

Crack Formation and Propagation Behavior of $Al_2$$O_3$/$ZrO_2$Laminate Composites ($Al_2$$O_3$/$ZrO_2$적층복합체의 균열생성 및 전파거동)

  • 방희곤;박상엽
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.11
    • /
    • pp.1058-1064
    • /
    • 2000
  • 연속슬립캐스팅 및 상압소결법으로 $Al_2$O$_3$/ZrO$_2$적층복합체를 제조하였으며, 적층복합체에서 ZrO$_2$층을 단사정, 정방정 및 입방정으로 각각 달리 적층하여 균열생성 및 전파 거동에 미치는 ZrO$_2$상의 영향을 고찰하였다. 균열 생성은 냉각시 $Al_2$O$_3$층과 ZrO$_2$층 간의 열팽창 계수의 차이에 의한 열적불일치응력이 가장 큰 요인으로 작용하였다. 적층체 내에 존재하는 균열은 tetra-ZrO$_2$의 경우 적층두께 조절로 가능하였으며, cubic-ZrO$_2$의 경우는 냉각속도 조절로 균열밀도로 크게 낮출 수 있었다. $Al_2$O$_3$/ZrO$_2$적층체를 구성하는 세가지 ZrO$_2$상(mono, tetra, cubic)들 중에서 cubic-ZrO$_2$가 포함된 적층체의 경우 $Al_2$O$_3$와 ZrO$_2$계면에 형성된 잔류압축응력으로 인한 균열굴절 효과를 얻을 수 있었다.

  • PDF

Properties of the Powders of the System Al2O3-ZrO2-Y2O3 Prepared by Precipitation Method (침전법으로 제조한 Al2O3-ZrO2-Y2O3계 분말의 특성)

  • 김준태;홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.117-124
    • /
    • 1988
  • The properties of the powders of the system Al2O3-ZrO2-Y2O3 prepared by precipitation method were investigated. Al2(SO4)3$.$18H2O3, ZrOCl2$.$8H2O and YCl3$.$6H2O were used as starting materials. Amorphous aluminum hydrate prepared by precipitation method was completely transformed to alpha Al2O3 as a result of calcining at 1100$^{\circ}C$ for 1 hr and gamma, delta and theta phases appeared as transition phases. In ZrO2-Y2O3 system prepared by co-precipitation method, the crystallization temperature of ZrO2 was increase with Y2O3 contents. The coupled crystallization occured in coprecipitated Al2O3-ZrO2-Y2O3 system, therefore the formation temperature of alpha Al2O3 and ZrO2-Y2O3 system. In this ternary system, the powder morphology showed a particular shape which was composed of large Al2O3 grains having small spherical ZrO2 particles within large Al2O3 grain and relatively large ZrO2 particles along the grian boundaries.

  • PDF

Studied on the Crystallization of $Li_2O-Al_2O_3-SiO_2$ Glass by Adding $TiO_2$ and $ZrO_2$ ($TiO_2$$ZrO_2$의 첨가에 따르는 $Li_2O-Al_2O_3-SiO_2$ 계 유리의 결정화에 관한 연구)

  • 박용완;전문덕
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.187-191
    • /
    • 1981
  • The effect of additions, $TiO_2$ and $ZrO_2$ as nucleant on the base glass which composition was determined to 0.97 $Li_2O-Al_2O_3-SiO_2$ has been investigated by means of D.T.A., X-ray diffraction and dilatation. $TiO_2$ and $ZrO_2$ as nucleant were added 0.06mole, in which ratios of $TiO_2$/$ZrO_2$ were varied 1/0, 2/1, 1/1, 1/2 and 0/1. The crystalline phases were appeared to $\beta$-spodumene as principal, $\beta$-eucryptite and $ZrO_2$ as secondary, regardless of nucleant variations. The crystallinity of the crystallized glass added $TiO_2$, $ZrO_2$ mixture as nucleant was higher than that of the glass added $TiO_2$ or $ZrO_2$ only. The crystallinity of the glass added $TiO_2$/$ZrO_2$ =1/1 was highest. Increasing the addition of $ZrO_2$, it has been observed that the crystal growing temperature became higher.

  • PDF

Loss of Li2O Caused by ZrO2 During the Electrochemical Reduction of ZrO2 in Li2O-LiCl Molten Salt (Li2O-LiCl 용융염을 이용한 ZrO2의 전기화학적 환원과정에서 발생하는 Li2O의 손실)

  • Park, Wooshin;Hur, Jin-Mok;Choi, Eun-Young;Kim, Jong-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.229-236
    • /
    • 2012
  • A molten salt technology using $Li_2O$-LiCl has been extensively investigated to recover uranium metal from spent fuels in the field of nuclear energy. In the reduction process, it is an important point to maintain the concentration of $Li_2O$. $ZrO_2$ is inevitably contained in the spent fuels because Zr is one of the main components of fuel rod hulls. Therefore, the fate of $ZrO_2$ in $Li_2O$-LiCl molten salt has been investigated. It was found that $Li_2ZrO_3$ and $Li_4ZrO_4$ were formed chemically and electrochemically and they were not reduced to Zr. The recycling of $Li_2O$ is the key mechanism ruling the total reaction in the electrolytic reduction process. However, $ZrO_2$ will have a role as a $Li_2O$ sink.