• Title/Summary/Keyword: ZrO2 thin film

Search Result 217, Processing Time 0.025 seconds

Structural and ferroelectric characteristics of sol-gel $Pb(Zr_{1-x}Ti_x)O_3$ thin films according to the sintering conditions and Zr/Ti mol% (소성 조건과 Zr/Ti 몰비에 따른 졸겔 $Pb(Zr_{1-x}Ti_x)O_3$ 박막의 구조 및 강유전 특성)

  • 김준한;윤현상;박정흠;장낙원;박창엽
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.836-850
    • /
    • 1996
  • In this study, we have analyzed structural analysis and measured ferroelectric characteristics of PZT thin films prepared by sol gel process with different sintering conditions and different Zr/Ti mot%. When the Zr mot% of PZT thin film was increased, it was found that the remanent. polarization and coercive field were decreased and increased, respectively. Also, the maxium dielectric constant of PZT(50/50) thin film was 786.8. We got double hysteresis(anti-fcrroelectric) curve from PbZrO$_{3}$ thin film. As heating rate goes up, pyrochlore phase of PZT thin film was decreased and dielectric and ferroelectric characteristics were improved. As a result of variation of sintering temperature and time 500.deg. C-800.deg. C and 5 sec.-8 hours, respectively, we got optimal sintering temperature and time. The optimium sintering temperature and time of conventional furnace method and rapid thermal processing method were 650.deg. C-700.deg. C for 30-60 minutes and 700.deg. C/20 seconds-2 minutes, respectively.

  • PDF

Properties of Nano-sized Au Particle Doped ZrO2 Thin Film Prepared by the Sol-gel Method (졸-겔법에 의한 나노 사이즈 Au 미립자 분산 ZrO2 박막의 특성)

  • 이승민;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1197-1201
    • /
    • 2003
  • Thin film on SiO$_2$ glass was synthesized by a dip-coating method from the ZrO$_2$ sol which had dispersed nanosize Au particle under ambient atmosphere. After heat treatment of the prepared thin film, the characteristics were investigated by X-ray diffraction, UV-VIS spectrometer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). It was found that ZrO$_2$ thin film with 100 nm thickness was crystallized to tetragonal phase at 50$0^{\circ}C$. The size of dispersed Au particle was 15∼40nm and the film had a smooth surface with a roughness of 0.84 nm. The film showed nonlinearity characteristics with absorption peaks at 630∼670nm visible region because of the plasma resonance of Au metallic particles.

Characterization of BLT/insulator/Si structure using $ZrO_2$ and $CeO_2$ insulator ($ZrO_2$$CeO_2$ 절연체를 이용한 BLT/절연체/Si 구조의 특성)

  • Lee, Jung-Mi;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.186-189
    • /
    • 2003
  • The MFIS capacitors were fabricated using a metalorganic decomposition method. Thin layers of $ZrO_2$ and $CeO_2$ were deposited as a buffer layer on Si substrate and BLT thin films were used as a ferroelectric layer. The electrical and structural properties of the MFIS structure were investigated. X -ray diffraction was used to determine the phase of the BLT thin films and the quality of the $ZrO_2$ and $CeO_2$ layer. AES show no interdiffusion and the formation of amorphous $SiO_2$ layer is suppressed by using the $ZrO_2$ and $CeO_2$ film as buffer layer between the BLT film and Si substrate. The width of the memory window in the C-V curves for the $BLT/ZrO_2/Si$ and $BLT/CeO_2/Si$ structure is 2.94 V and 1.3V, respectively. The experimental results show that the BLT-based MFIS structure is suitable for non-volatile memory FETs with large memory window.

  • PDF

Study on the characteristics of ALD, ZrO2 thin film for next-generation high-density MOS devices (차세대 고집적 MOS 소자를 위한 ALD ZrO2 박막의 특성 연구)

  • Ahn, Seong-Joon;Ahn, Seung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • As the packing density of IC devices gets ever higher, the thickness of the gate $SiO_2$ layer of the MOS devices is now required to be reduced down to 1 nm. For such a thin $SiO_2$ layer, the MOS device cannot operate properly because of tunneling current and threshold voltage shift. Hence there has been much effort to develop new dielectric materials which have higher dielectric constants than $SiO_2$ and is free from such undesirable effects. In this work, the physical and electrical characteristics of ALD $ZrO_2$ film have been studied. After deposition of a thin ALD $ZrO_2$ film, it went through thermal treatment in the presence of argon gas at $800^{\circ}C$ for 1 hr. The characteristics of morphology, crystallization kinetics, and interfacial layer of $Pt/ZrO_2/Si$ samples have been investigated by using the analyzing instruments like XRD, TEM and C-V plots. It has been found that the characteristics of the $Pt/ZrO_2/Si$ device was enhanced by the thermal treatment.

Fabrication of Zirconium Titanate Thin film from Layer-by-Layer Structure of Primitive Oxides prepared by PRTMOCVD (PRTMOCVD 법을 통한 단성분계 산화막의 적층형 구조로부터 Zirconium Titanate 박막의 제조)

  • Song, Byung-yun;Kwon, Yong Jung;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.378-383
    • /
    • 2007
  • A novel fabrication method for the multi-component metal oxides such as zirconium titanate($Zr_xTi_{1-x}O_2$) has been suggested, which would yield the uniform film characteristics and control the film composition at relatively low process temperature. The method has the basic concept that firstly layer-by-layer structure is constructed with the primitive oxide layers, which are components of the desired multi-component oxides, and secondly the film is annealed at appropriate thermal conditions for the transformation to a single-phase multi-component oxides. In this study, PRTMOCVD(pulsed rapid thermal metalorganic chemical vapor deposition) possessing the superior thickness controllability was introduced to prepare $ZrO_2$ and $TiO_2$ thin film for zirconium titanate. Single-phase zirconium titanate thin films have been prepared successfully by the interdiffusion of oxide multilayers having several alternating layers of $ZrO_2$ and $TiO_2$. The Zr/Ti ratio of zirconium titanate could be controlled easily by altering the thickness of $ZrO_2$ and $TiO_2$ thin film.

Sonochemical Synthesis, Thermal Studies and X-ray Structure of Precursor [Zr(acac)3(H2O)2]Cl for Deposition of Thin Film of ZrO2 by Ultrasonic Aerosol Assisted Chemical Vapour Deposition

  • Hussain, Muzammil;Mazhar, Muhammad;Rauf, Muhammad Khawar;Ebihara, Masahiro;Hussain, Tajammal
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.92-96
    • /
    • 2009
  • A new precursor [$Zr(acac)_{3}(H_{2}O)_{2}$] was synthesized by Sonochemical technique and used to deposit thin $ZrO_{2}$ film on quartz and ceramic substrate via ultrasonic aerosol assisted chemical vapour deposition (UAACVD) at 300 ${^{\circ}C}$ in oxygen environment followed by annealing of the sample for 2-3 minutes at 500 ${^{\circ}C}$ in nitrogen ambient. The molecular structure of the precursor determined by single crystal X-ray analysis revealed that the molecules are linked through intermolecular hydrogen bonds forming pseudo six and eight membered rings. DSC and TGA/FTIR techniques were used to determine thermal behavior and decomposition temperature of the precursor and nature of evolved gas products. The optical measurement of annealed $ZrO_{2}$ film with tetragonal phase shows optical energy band gap of 5.01 eV. The particle size, morphology, surface structure and composition of deposited films were investigated by XRD, SEM and EDX.

Characterization of 0.5 % Ce-doped Ba($Zr_{0.2}Ti_{0.8}$)$O_3$ Thin Films Grown by RF Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 성장시킨 0.5 % Ce-doped Ba($Zr_{0.2}Ti_{0.8}$)$O_3$(BCZT) 박막의 특성분석)

  • 최원석;박용섭;이준신;홍병유
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.301-304
    • /
    • 2002
  • We investigated the structural and electrical properties of Ce-doped Ba($Zr_{0.2}Ti_{0.8}$)$O_3$(BCZT) thin films with a mole fraction of x=0.2 and a thickness about 100 nm. BCZT films were prepared on Pt/Ti/$SiO_2$/Si substrate by a RF magnetron sputtering system. We have measured the thickness profile with Ar/$O_2$ ratio and the surface roughness. It was observed that the oxygen gas, which introduced during the film deposition, have an influence on the roughness of the film and the film roughness was reduced by annealing from 2.33 nm to 2.02 m (RMS at $500^{\circ}C$, Ar:6 scrim, $O_2$:6 sccm). We have found that annealing procedure after top electrode deposit can reduce the dissipation factor.

  • PDF

Characterization of the Annealing Effect of 0.5 % Ce-doped Ba(Zr0.2Ti0.8)O3 Thin Films Grown by Rf Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 성장시킨 0.5% Ce-doped Ba(Zr0.2Ti0.8)O3 (BCZT) 박막의 열처리 특성분석)

  • 최원석;박용섭;이준신;홍병유
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.361-364
    • /
    • 2003
  • It was investigated that the structural and electrical Properties of Ce-doped Ba(Zr$_{x}$Ti$_{1-x}$ )O$_3$ (BCZT) thin films with a mole fraction of x=0.2 and a thickness about 100 nm. BCZT films were prepared on Pt/Ti/SiO$_2$/Si substrate by a RF magnetron sputtering system. We have measured the thickness profile with Ar/O$_2$ ratio and the surface roughness. It was observed that the oxygen gas, which introduced during the film deposition, have an influence on the roughness of the film and the film roughness was reduced by annealing from 2.33 nm to 2.02 nm (RMS at 500 $^{\circ}C$, Ar:6 sccm, $O_2$:6 sccm). It was found that annealing procedure after top electrode deposit can reduce the dissipation factor.

Temperature effect on Dry Etching of ZrO2 in Cl2/BCl3/Ar Plasma (기판 온도에 따른 Cl2/BCl3/Ar 플라즈마에서 ZrO2 박막의 건식 식각)

  • Yang, Xue;Ha, Tae-Kyung;Wi, Jae-Hyung;Um, Doo-Seung;Kim, Chang-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.256-259
    • /
    • 2009
  • The wafer surface temperature is an important parameter in the etching process which influences the reaction probabilities of incident species, the vapor pressure of etch products, and the re-deposition of reaction products on feature surfaces. In this study, we investigated all of the effects of substrate temperature on the etch rate of $ZrO_2$ thin film and selectivity of $ZrO_2$ thin film over $SiO_2$ thin film in inductively coupled plasma as functions of $Cl_2$ addition in $BCl_3$/Ar plasma, RF power and dc-bias voltage based on the substrate temperature in range of $10^{\circ}C$ to $80^{\circ}C$. The elements on the surface were analyzed by x-ray photoelectron spectroscopy (XPS).

Preparation of ZrO2 and SBT Thin Films for MFIS Structure and Electrical Properties (ZrO2 완충층과 SBT박막을 이용한 MFIS 구조의 제조 및 전기적 특성)

  • Kim, Min-Cheol;Jung, Woo-Suk;Son, Young-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.377-385
    • /
    • 2002
  • The possibility of $ZrO_2$ thin film as insulator for Metal-Ferroelectric-Insulator-Semiconductor(MFIS) structure was investgated. $SrBi_2Ta_2O_9$ and $SrBi_2Ta_2O_9$(SBT) thin films were deposited on P-type Si(111) wafer by R. F. magnetron sputtering method. The electrical properties of MFIS gate were relatively improved by inserting the $ZrO_2$ buffer layer. The window memory increased from 0.5 to 2.2V in the applied gate voltage range of 3-9V when the thickness of SBT film increased from 160 to 220nm with 20nm thick $ZrO_2$. The maximum value of window memory is 2.2V in Pt/SBT(160nm)/$ZrO_2$(20nm)/Si structure with the optimum thickness of $ZrO_2$. These memory windows are sufficient for practical application of NDRO-FRAM operating at low voltage.