• Title/Summary/Keyword: ZrC

Search Result 1,787, Processing Time 0.04 seconds

The Effect of Deuterium Injection to Amorphous $Fe_{90}Zr_{10}$ (비정질 $Fe_{90}Zr_{10}$의 중수소 주입효과)

  • Park, C.M.;Kang, S.K.;Lee, K.B.;Kim, C.K.;Nahm, K.;Chang, K.H.;Kim, Y.B.;Kim, C.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1992
  • Deuterium was injected into melt-spun ribbons of ${\alpha}-Fe_{90}Zr_{10}$ using the electrolytic hydrogenation method, and the magnetic properties of these ${\alpha}-D_{x}Fe_{90}Zr_{10}$ ribbons were studied. By comparing these results with those of ${\alpha}-H_{x}Fe_{91}Zr_{9}$, the effects of phonons to magnetic properties were investigated. The Curie temperature $T_{c}$, and the spontaneous magnetizations of the $D_{47}Fe_{90}Zr_{10}$ and the $Fe_{90}Zr_{10}$ were studied using the Mbssbauer spectroscopy. From these investigations, it was found that the Curie temperature of $D_{x}Fe_{90}Zr_{10}$ was 75K higher than that of $Fe_{90}Zr_{10}$. It was believed that this indicated the importance of local deformation to the amorphous magnetism. Also by comparing the spontaneous magnetizations of $D_{47}Fe_{90}Zr_{10}$ with those of $Fe_{90}Zr_{10}$ as a function of temperature, it was found that the deuterium injection reduced the fluctuation of exchange integral.

  • PDF

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive (상압소결(常壓燒結)한 SiC-$ZrB_2$ 도전성(導電性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1230-1231
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of 8${\sim}$20[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.01[%], 81.58[Mpa], 31.437[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}$-SiC into ${\alpha}$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. In this paper, it is convinced that ${\beta}$-SiC based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

  • PDF

Mechanical Properties of ZTA Composites Fabricated by Reaction Bonding (반응결합에 의해 제조된 ZTA복합체의 기계적 특성)

  • 장복기;백용혁;문종하;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.577-582
    • /
    • 1997
  • The mechanical properties of Al2O3-ZrO2 composites fabricated by RBAO(reaction bonded aluminium oxide) process were investigated. As the amount of ZrO2 increased the sinstered density of Al2O3-ZrO2 composites decreased slightly, but wear resistance was enhanced. Bending strength of Al2O3-ZrO2 composites increased in proportion to the amount of al in case of a fixed ZrO2 content. When the amount of Al was fixed bending strength reached its maximum value at 25 wt% ZrO2. The fracture toughness(K1c) increased with increasing content of ZrO2, but decreased with increasing Al amount. On the other hand, the fracture mode of Al2O3-ZrO2 composites was the mixed mode of inter-and transgranular fracture.

  • PDF

Synthesis and Sintering Behavior of Zr2WP2O12 Ceramics (Zr2WP2O12 세라믹스의 합성과 소결거동 연구)

  • Kim, Yong-Hyeon;Kim, Nam-Ok;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.586-591
    • /
    • 2012
  • $Zr_2WP_2O_{12}$ powder, which has a negative thermal expansion coefficient, was synthesized by a solid-state reaction with $ZrO_2$, $WO_3$ and $NH_4H_2PO_4$ as the starting materials. The synthesis behavior was dependent on the solvent media used in the wet mixing process. The $Zr_2WP_2O_{12}$ powder prepared with a solvent consisting of D. I. water was fully crystallized at $1200^{\circ}C$, showing a sub-micron particle size. According to the results obtained from a thermal analysis, a $ZrP_2O_7$ was synthesized at a low temperature of $310^{\circ}C$, after which it was reacted with $WO_3$ at $1200^{\circ}C$. A new sintering additive, $Al(OH)_3$, was applied for the densification of the $Zr_2WP_2O_{12}$ powders. The cold isostatically pressed samples were densified with 1 wt% $Al(OH)_3$ additive or more at $1200^{\circ}C$ for 4 h. The main densification mechanism was liquid-phase sintering due to the liquid which resulted from the reaction with amorphous or unstable $Al_2O_3$ and $WO_3$. The densified $Zr_2WP_2O_{12}$ ceramics showed a relative density of 90% and a negative thermal expansion coefficient of $-3.4{\times}10^{-6}/^{\circ}C$. When using ${\alpha}-Al_2O_3$ as the sintering agent, densification was not observed at $1200^{\circ}C$.

Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

Annealing Temperature Dependence on Anodizing Properties of ZrO2/Al Films Prepared by Sol-gel Method (졸-겔법으로 제조된 ZrO2/Al막의 열처리 온도에 따른 양극산화 특성)

  • 박상식;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.909-915
    • /
    • 2003
  • Anodic oxide films on aluminum play an important role as a dielectrics in aluminum electrolytic capacitor. In order to obtain the high capacitance, ZrO$_2$ films were coated on aluminum foils by sol-gel method and then, the properties of anodized films were studied. The coating and drying of the films were repeated 4-10 times and annealed at 300~$600^{\circ}C$ and the triple layer of ZrO$_2$/Al-ZrO$_{x}$ /Al$_2$O$_3$ was formed onto aluminum substrates after anodizing of ZrO$_2$/Al film. The thickness of $Al_2$O$_3$ layer was decreased with increasing the annealing temperature due to the densification of ZrO$_2$ film. The ZrO$_2$ films were crystallized even at 30$0^{\circ}C$ and showed nanocrystalline structure. The. capacitance of aluminum foil annealed at low temperature was higher than that at high temperature. The increase of capacitance was due to the high capacitance of ZrO$_2$ film annealed at low temperature. The capacitance of ZrO$_2$ coated aluminum increased about 3 times compared to that without a ZrO$_2$ layer after anodizing to 400 V. From these results, the aluminum foils with composite oxide layers are found to be applicable to the aluminum electrolytic capacitor.

Properties and Manufacture of the $\beta-SiC-ZrB_2$ Composited Densified by Liquid-Phase Sintering. (액장 소결에 의한 $\beta-SiC-ZrB_2$ 복합체의 제조와 특성)

  • Sin, Yong-Deok;Ju, Jin-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.92-97
    • /
    • 1999
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-Sic$+39vol.%$ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3(6:4wt%)$. In this microstructures, no reactions and elongated $\alpha$-SiC grains with equiaxed $ZrB_2$, gains were observed between $\beta-SiC$ and $ZrB_2$, and the relative density was over 97.6% of the theoretical density. Phase analysis of the composites by XRD revealedmostly of $\alpha$-SiC(6H, 4H), $ZrB_2$, and weakly $\beta-SiC$(15R) phase. The fracture toughness decreased with increasing $Al_2O_3+Y_2O_3$ contents and showed the highest of $6.37MPa.m^{\fraction ane-half}$ for composite added with 4wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity increased with increasing $Al_2O_3+Y_2O_3$contents and showed the lowest of $1.51\times10^{-4}\Omega.cm$ for composite added with $Al_2O_3+Y_2O_3$ additives at $25^{\circ}C$. This reason is the increasing tendency of pore formation according to amount of liquid forming additives $Al_2O_3+Y_2O_3$. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

Manufacturing and Properties of Low Vacuum Plasma Sprayed W-Carbide Hybrid Coating Layer (진공 플라즈마 스프레이 공정을 이용한 W계 복합 코팅층의 제조 및 특성 연구)

  • Cho, Jin-Hyeon;Jin, Young-Min;Ahn, Jee-Hoon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.226-237
    • /
    • 2011
  • W-ZrC and W-HfC composite powders were fabricated by the Plasma Alloying & Spheroidization (PAS) method and the powders were sprayed into hybrid coating layers by using Low Vacuum Plasma Spray (LVPS) process, respectively. Microstructure, mechanical properties, and ablation characteristics of the fabricated coating layers were investigated. The LVPS process led to successful production of W-Carbide hybrid coatings, approximately 400 ${\mu}M$ or above in thickness. As the substrate preheating temperature increased from $870^{\circ}C$ to $917^{\circ}C$, the hardness of the W-ZrC coating layer increased due to decreased porosity. Vickers hardness showed higher value (about 108.4 HV) in W-ZrC hybrid coating material compared to that of W-HfC while adhesive strength was found to be similar in both coating layers. The plasma torch test revealed good ablation resistance of the W-Carbide hybrid coating layers. The relatively high performance W-ZrC coating layer at the elevated temperature is thought to be attributed to both the strengthening effect of ZrC particle remained in the layer and the formation of ZrO2 phase with high temperature stability.

Fabrication of $ZrB_2$ Ceramics for Thermocouple Protective Tubes by SHS Process (SHS 공정에 의한 열전대 보호관용 $ZrB_2$ 세라믹스의 제조)

  • 곽철상;김상배;이윤복;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1165-1172
    • /
    • 1997
  • ZrB2 powders were prepared from a mixture of ZrO2, B2O3 and Mg by self-propagating high temperature synthesis method. The combustion product was successfully obtained from a mixture of ZrO2:B2O3:Mg=1:2:8.5 molar ratio. By-product, MgO was effectively removed by leaching with 1M HCl solution at 9$0^{\circ}C$ for over 5hours. After leaching, the Mg content was 0.86~1.42 wt%, and the mean particle size was 4.72${\mu}{\textrm}{m}$. The addition of 7.5 wt%(14Ni:1.0C) as a sintering aid greatly densified ZrB2 bodies compared with that of only Ni. The ZrB2 sintered bodies containing 7.5 wt%(14Ni:1.0C) was 94.3% of the theoretical density. In this case, ZrB2 existed as a major phase and had a bend strength of 300 MPa and a vickers hardness of 2000 kg/$\textrm{mm}^2$.

  • PDF

Composition Control of YSZ Thin Film Prepared by MOCVD

  • Matsuzaki, Tomokazu;Okuda, Norikazu;Shinozaki, Kazuo;Mizutani, Nobuyasu;Funakubo, Hiroshi
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.134-137
    • /
    • 2000
  • Zirconia films stabilized b $Y_2O_3$, YSZ, films were deposition by metal organic chemical vapor deposition (MOCVD) onto various kind of substrates. $Y_2O_3$, $ZrO_2$and the mixtures of these two were deposited and characterized. The deposition rate, the film composition and the structure could be systematically varied through the $Y(C_{11}H_{19}O_2)_3$, Zr(O.t-$C_H_9)_4$source gas ratios and the deposition temperature. The Y/Zr ratio in YSZ film could be adjusted by controlling the ratio of $Y(C_{11}H_{19}O_2)_3$, Zr(O.t-$C_4H_9)_4$partial pressures. This is because the ratios of the deposition rates of Y and Zr atoms in $Y_2O_3$and $ZrO_2$films to those in YSZ films, Ф, are constant irrespective of the input gas concentration. However, the Y/Zr ratio was found to be smaller than that estimated based on the deposition rates of un-mixed $Y_2O_3$and $ZrO_2$films. This is because the Фs of Y and Zr atoms are not equal. The activation energy of $Y_2O_3$component in YSZ films was similar to that of $ZrO_2$component in YSZ films. These YSZ values were more than 4 times larger than those of un-mixed $Y_2O_3$or $ZrO_2$films.

  • PDF