• 제목/요약/키워드: Zr-based alloys

검색결과 121건 처리시간 0.021초

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Zr-based 비정질 합금의 비정질 특성에 미치는 Sn의 영향 (The Effect of Sn on the Glass Formation Ability of the Zr-based Amorphous Alloy)

  • 이병철;박흥일;박봉규;김성규
    • 한국주조공학회지
    • /
    • 제34권2호
    • /
    • pp.49-53
    • /
    • 2014
  • In commercial Zr-Nb-Cu-Ni-Al amorphous alloys, expensive element, Zr, was substituted to Sn which was cheaper one, and then, glass forming ability, compressive strength and hardness of them were estimated. Even though the Sn was added up to 1.5%, resulting phase was not changed to the crystalline form. It was confirmed by X-ray diffraction and thermal analyses. In the X-ray profiles, there were no peaks for crystalline phases and typical halo pattern for amorphous phase was appeared at the diffraction angle of $35^{\circ}{\sim}45^{\circ}$. Thermal analyses also showed that the Sn modified alloys were corresponded to the amorphous standards where ${\delta}T$(= Tx - Tg) and Trg(= Tg/Tm) affecting to the amorphous forming ability were more than 50K and 0.60 respectively. Compressive strengths were 1.77 GPa, 1.63 GPa, 1.65 GPa and 1.77 GPa for 0%Sn, 0.5%Sn, 1.0%Sn and 1.5%Sn respectively. Hardnesses of the Sn modified alloys were decreased from 752 Hv to 702 Hv in 1.0%Sn and recovered to 746 Hv in 1.5%Sn.

Zr계 수소저장합금의 전극특성에 미치는 은 첨가의 영향 (The Effects of Ag Addition on the Electrode Properties of Hydrogen Storage Alloys)

  • 노학;정소이;최승준;최전;서찬열;박충년
    • 한국수소및신에너지학회논문집
    • /
    • 제8권3호
    • /
    • pp.137-141
    • /
    • 1997
  • The effects of Ag addition to Zr-based hydrogen storage alloys ($Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$, $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ and $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Fe_{0.1}$) on the electrode properties were examined. Ag-free and Ag-added Ze-based alloys were prepared by arc melting, crushed mechanically, and subjected to the electrochemical measurement. In $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy, 0.08 wt% Ag addition to the alloy improved the activation rate. Also Ag addition improved both activation property and discharge capacity in $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$. For these Ag-added alloys, discharge capacities with the change of charge-discharge current density(10mA, 15mA and 30mA) are almost constant. Showing very high rate capability, discharge capacity of $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Fe_{0.1}$ alloy increased by Ag addition to the alloy. When the amount of Ag addition in $Zr_{0.7}Ti_{0.3}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy increased too much, the electrode properties became worse. Unveiling mechanism of effect of Ag addition is now progressing in our laboratory.

  • PDF

Non-Stoichiometric Zr-Based 라베스상 수소저장합금의 방전특성 (The electrode characteristics of non-stoichiometric Zr-based Laves phase alloys)

  • 김동명;정재한;이한호;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.11-18
    • /
    • 1996
  • The Laves phase alloy hydrides have some promising properties as electrode materials in reversible metal hydride batteries. In this work, the hydrogen storage performance, crystallographic parameters, surface morphology, surface area and electrochemical characteristics of the non-stoichiometric $ZrMn_{0.3}V_{0.7}Ni_{1.4+{\alpha}}$, $ZrMn_{0.5}V_{0.5}Ni_{1.4+{\alpha}}$($\alpha$ =0.0, 0.2, 0.4, 0.6) alloys were examined. These as-cast alloys were found to have mainly a cubic C15-type Laves phase structure by X -ray diffraction analysis. The equilibrium pressure of the alloy were increased as $\alpha$ increased in both two types alloy. In case of $ZrMn_{0.5}V_{0.5}Ni_{1.4+{\alpha}}$ alloys, discharge efficiency and the rate capability of the alloy were decreased as $\alpha$ increased but, these values were increased in case of $ZrMn_{0.3}V_{0.7}Ni_{1.4+{\alpha}}$ alloys. The differences of these electrode properties observed were dependent on the reaction surface area and the catalytic activity of unit area of the each electrode.

  • PDF

Ni-MH 2차 전지용 고용량, 고성능 Zr-Ti-Mn-V-Ni계 수소저장합금의 개발에 관한 연구 (A Study on the Development of Zr-Ti-Mn-V-Ni Hydrogen Storage Alloy for Ni-MH Rechargeable Battery)

  • 김동명;정재한;이상민;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제7권2호
    • /
    • pp.137-145
    • /
    • 1996
  • The Zr-based $AB_2$ type Laves phase hydrogen storage alloys have some promising properties, long cycle life, high discharge capacity, as electrode materials in reversible metal hydride batteries. However, when these alloys are used as negative electrode for battery, there is a problem that their rate capabilities are worse than those of commercialized $AB_5$ type hydrogen storage alloys. In this work, we tried to develop the Zr-based $AB_2$ type Laves phase hydrogen storage alloys which have high capacity and, especially, high rate capability.

  • PDF

Study on the HDDr Characteristics of $Nd_{16}Fe_{76-x}B_8Zr_x$ (x0-2.0) Alloys and the Magnetic Properties of the HDDR Materials

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • 제1권2호
    • /
    • pp.75-81
    • /
    • 1996
  • Study on the HDDr Characteristics of Nd16Fe76-xB8Zrx (x=0-2.0) Alloys and the Magnetic Properties of the HDDR Materials Nd16Fe76-xB8Zrx (where x=0-2.0) have been studied to see the effect of Zr addition on HDDR characteristics. A particular emphasis was place upon the anisotropy of the HDDR material. Anisotropy of the HDDR powder material has been evaluated by comparing the remanence values of the aligned sample measured along the aligning direction and the direction perpendicular to it. The HDDR characteristics of the alloys were investigated by means of DAT and TPA. Magnetic chracterisation of the HDDR processed materials was performed using a VSM and a TMA. The magnetic domain structure of the HDDR materials was examined by means of polarised microscope using a solid HDDR processed material. It has veen found that small addition (0.1 at %) of Zr to Nd-Fe-B-type alloy retards thedisproportionatio kinetics of the hydrogenated material. Desorption characteristic of the disproportionated materials has been found not to be affected significantly by the Zr addition. The Zr addition has been found to facilitate size of the powder. As the particle size decreases, the intrinsic coercivity decreases radically, and this is explained in terms of structural damage and/or oxidation caused during mechanical milling. It has also been found that the degree of alignment representing the anisotropic character of the HDDR powder is enhanced with decreasing particle size. Alloys with compositions based on

  • PDF

Nb 첨가 핵연료피복관용 Zr 신합금의 부식특성 연구 (Study on Corrosion Characteristic of New Nb-containing Zr based Alloys for Fuel cladding)

  • 최병권;하승원;정용환
    • 한국재료학회지
    • /
    • 제11권5호
    • /
    • pp.405-412
    • /
    • 2001
  • 본 연구에서는 $360^{\circ}C$ 물 및 $360^{\circ}C$, 70ppm LiOH 수용액 분위기의 static autoclave를 이용하여 새롭게 개발한 Zr 신합금 (Zr-0.4Nb-0.8Sn-xFeCrMn, Zr-0.2Nb-1.1Sn-xFeCrMn, Zr-1.0Nb-xFeCu) 의 부식 특성을 평가하였다. 합금의 미세구조를 광학현미경과 TEM을 이용하여 관찰하였고, 부식시험 중에 생성된 산화막은 SEM과 XRD를 이용하여 단면 및 결정구조를 조사하였다. 부식시험 결과, 3종의 합금 모두 $360^{\circ}C$ 물 분위기보다 $360^{\circ}C$, 70ppm LiOH 수용액 분위기에서의 부식저항성이 감소하였으며 특히, High Nb 합금의 경우 급격한 가속 부식현상을 나타내었다. 합금원소 첨가량과 관련하여 Nb의 함량을 고용도 이내로 줄이고 Sn을 적절히 첨가한 조성의 합금이 Sn을 첨가하지 않고 고용도 이상의 Nb을 가진 합금보다 우수한 부식저항성을 나타내었다. 또한 최종열처리가 부식에 미치는 영향의 경우에, 완전재결정 조직의 합금이 부분재결정 조직을 가진 합금보다 부식저항성이 감소되었는데 이는 기지조직에서 석출하늘 제 2상의 크기 및 분포에 의한 영향으로 사료된다.

  • PDF

Localized Corrosion of Pure Zr and Zircaloy-4

  • Yu, Youngran;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • 제2권6호
    • /
    • pp.253-259
    • /
    • 2003
  • Zirconium based alloys have been extensively used as a cladding material for fuel rods in nuclear reactors, due to their low thermal neutron absorption cross-section, excellent corrosion resistance and good mechanical properties at high temperatures. However, a cladding material for fuel rods in nuclear reactors was contact water during long time at high-temperature, so it is necessary to improve the wear and corrosion resistance of the fuel cladding, At ambient environment, there are few data or paper on the characteristic of corrosion in chloride solution and acidic solution. The specimens used in this work are pure Zr and Zircaloy-4. Zircaloy-4 is a specific zirconium-based alloy containing, on a weight percent basis, 1.4% Sn, 0.2% Fe, 0.1% Cr. Pitting corrosion resistance of two alloys by ASTM G48 is higher than that of electrochemical method. Passive film formed on Zircaloy-4 is mainly composed of $ZrO_2$, metallic Sn, and iron species regardless of formation environments. Also, passive film formed on Zr alloys shows n-type semiconductic property on the base of Mott-Schottky plot.