• 제목/요약/키워드: Zoom lens design

Search Result 66, Processing Time 0.031 seconds

Convergence Point Adjustment Improving Visual Discomfort for a Zoom on a Stereoscopic Camera

  • Ha, Jong Soo;Kim, Dae Woong;Kim, Dong Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.633-640
    • /
    • 2016
  • In a dual lens stereoscopic camera, a convergence point determines the stereopsis effects of a video. When a user zooms an object, a convergence point is fixed since it is not coupled with a zoom function. Due to the fixed convergence point, it is possible for a zoom to cause the excessive binocular disparity resulting in visual discomfort. In this paper, to solve this problem, we build the relational model including all phenomena possible to arise and propose the adjustment methods of a convergence point by the positions of a focus, an object and a convergence point. We also evaluate the experiments measuring a binocular disparity and the subjective test to investigate the visual comfort. The results show that one of the proposed methods produced more comfortable 3D images to viewers than the others.

The design of microscopic system using zoom structure with a fixed magnification and the independency on the variation of object distance (줌 구조를 이용하여 물체거리가 변해도 상면과 배율이 고정되는 현미경 광학계의 설계)

  • 류재명;조재흥;임천석;정진호;전영세;이강배
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.613-622
    • /
    • 2003
  • The multi-configurative microscopic system for inspecting the wire-bonding of reed frame is designed. Rays refracted by objective lens group which is composed of common lens group of x2 and x6 are splitted by beam-splitter, and Rays through the central region and the boundary region of the object imaged at x2 and x6 through imaging lens groups, respectively. The depth of wire structure on the reed frame has about $\pm$3 mm, in order to observe by uniform magnification without the dependency on the variation of objective distance generated by the depth of wire structure on the reed frame, imaging lens groups should be moved on nonlinear locus like mechanically compensated zoom lenses. The nonlinear equations for zoom locus are derived by using the Gaussian bracket. Refraction powers and positions of each groups are numerically determined by solving the equations, and initial design data for each groups is obtained by using Seidel third order aberration theory. The optimization technique is finally utilized to obtain this microscopic system.

Infrared Dual-field-of-view Optical System Design with Electro-Optic/Laser Common-aperture Optics

  • Jeong, Dohwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • We report a midinfrared dual-field-of-view (FOV) optical system design for an airborne electro-optical targeting system. To achieve miniaturization and weight reduction of the system, it has a common aperture and fore-optics for three different spectral wavelength bands: an electro-optic (EO) band ($0.6{\sim}0.9{\mu}m$), a midinfrared (IR) band ($3.6{\sim}4.9{\mu}m$), and a designation laser wavelength ($1.064{\mu}m$). It is free to steer the line of sight by rotating the pitch and roll axes. Our design co-aligns the roll axis, and the line of sight therefore has a fixed entrance pupil position for all optical paths, unlike previously reported dual-FOV designs, which dispenses with image coregistration that is otherwise required. The fore-optics is essentially an achromatized, collimated beam reducer for all bands. Following the fore-optics, the bands are split into the dual-FOV IR path and the EO/laser path by a beam splitter. The subsequent dual-FOV IR path design consists of a zoom lens group and a relay lens group. The IR path with the fore-optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ to $5.40^{\circ}{\times}4.32^{\circ}$), due to the insertion of two Si lenses into the zoom lens group. The IR optical system is designed in such a way that the location and f-number (f/5.3) of the cold stop internally provided by the IR detector are maintained when changing the zoom. The design also satisfies several important performance requirements, including an on-axis modulation transfer function (MTF) that exceeds 10% at the Nyquist frequency of the IR detector pitch, with distortion of less than 2%.

Convergence Point Adjustment Methods for Minimizing Visual Discomfort Due to a Stereoscopic Camera

  • Ha, Jong-Soo;Kim, Dae-Woong;Kim, Dong Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.246-251
    • /
    • 2014
  • The recent rise of the three-dimensional television (3DTV) industry has led to a wide exploitation of the dual-lens stereoscopic camera. However, when the zoom-in function is used, it is possible that a camera object is magnified only with a fixed convergence point, thereby leading to visual discomfort. In this paper, we propose several methods based on which a convergence point can be adjusted to prevent visual discomfort during zoom-in for a dual-lens stereoscopic camera. Further, we produce 3D contents by applying the proposed methods to certain cases and at certain distances and conduct a subjective evaluation. On the subjective evaluation, 48 subjects watch the 3D contents created by the proposed methods and score the stages of the visual comfort. The result of the subjective evaluation shows that some of the proposed methods are more efficient than the others. We hope that these proposed high-efficiency methods can be applied to produce a dual-lens stereoscopic camera that allows convenient stereoscopic photography.

Design of a Convergence Point Adjustment Method to Minimize Visual Discomfort due to Zoom-In (줌인에 따른 시각적 불편을 최소화하기 위한 컨버전스 포인트 조정 기법의 설계)

  • Ha, JongSoo;Ban, ChaeHoon;Kim, DaeWoong;Kim, ChiHun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.665-671
    • /
    • 2013
  • Even though a dual lens stereoscopic camera allows for convenient stereoscopic photography, the necessity for the research comes up, since the dual lens stereoscopic camera can cause visual discomfort during zoom-in due to the fixed convergence point. We propose a method based on which a convergence point can be adjusted to prevent visual discomfort during zoom-in for a dual lens stereoscopic camera. First, the relational model is classified into nine kinds and defined, depending on locations of focus, object, and convergence point. And then, the method to minimize visual discomfort is suggested by adjusting convergence point on the given model. We also implement the suggested methods with anaglyph computer graphic and demonstrate the superiority of them.

Design of Cover Layer Incident Dual-Layer Near-Field Recording Optics with Hemispherical SIL (반구형 SIL을 이용한 미디어 내부 이층 근접장 광 기록계의 설계)

  • Kim Wan-Chin;Choi Hyun;Song Taesun;Park No-Cheol;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.4-11
    • /
    • 2005
  • In this paper, we propose novel optics design for media inside near-field recording (NFR) using hemispherical solid immersion lens (HMS). To obtain strong advantage of data protection and high data capacity simultaneously, HMS based near field optics using aplanatic position of super hemisphere is designed. In this design, to improve small optical tolerance of this aplanatic position, additional aspheric lens surface is added on top of the HMS and it is combined with zoom optics which composed of two single lenses having low numerical aperture (NA). Also, to compensate chromatic aberration which happens seriously in optics using blue laser diode, diffractive optical element is used. Using zoom optics, additional aspheric lens surface, and diffractive optical element together, wavefront aberration and chromatic aberration are effectively reduced in broad range of cover layer thickness and wavelength variation. In addition, In this paper, effect of gap induced aberration is investigated by analyzing different behavior of each TM and TE wave for designed media inside dual-layer NFR optics.

  • PDF

Design of Cover Layer Incident Dual-Layer Near-Field Recording Optics with Hemispherical SIL (반구형 SIL을 이용한 미디어 내부 이층 근접장 광 기록계의 설계)

  • Choi, Hyun;Kim, Wan-Chin;Song, Tae-Sun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • In this paper, we propose novel optics design for media inside near-field recording(NFR) using hemispherical solid immersion lens(HMS). To obtain strong advantage of data protection and high data capacity simultaneously, HMS based near field optics using aplanatic position of super hemisphere is designed. In this design, to improve small optical tolerance of this aplanatic position, additional aspheric lens surface is added on top of the HMS and it is combined with zoom optics which composed of two single lenses having low numerical aperture(NA). Also, to compensate chromatic aberration which happens seriously in optics using blue laser diode, diffractive optical element is used. Using zoom optics, additional aspheric lens surface, and diffractive optical element together, wavefront aberration and chromatic aberration are effectively reduced in broad range of cover layer thickness and wavelength variation. In addition, in this paper, effect of gap induced aberration is investigated by analyzing different behavior of each TM and TE wave for designed media inside dual-layer NFR optics.

  • PDF