• Title/Summary/Keyword: Zone model

Search Result 2,407, Processing Time 0.036 seconds

An experimental-computational investigation of fracture in brittle materials

  • De Proft, K.;Wells, G.N.;Sluys, L.J.;De Wilde, W.P.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.227-248
    • /
    • 2004
  • A combined experimental-computational study of a double edge-notched stone specimen subjected to tensile loading is presented. In the experimental part, the load-deformation response and the displacement field around the crack tip are recorded. An Electronic Speckle Pattern Interferometer (ESPI) is used to obtain the local displacement field. The experimental results are used to validate a numerical model for the description of fracture using finite elements. The numerical model uses displacement discontinuities to model cracks. At the discontinuity, a plasticity-based cohesive zone model is applied for monotonic loading and a combined damage-plasticity cohesive zone model is used for cyclic loading. Both local and global results from the numerical simulations are compared with experimental data. It is shown that local measurements add important information for the validation of the numerical model. Consequently, the numerical models are enhanced in order to correctly capture the experimentally observed behaviour.

Numerical analysis of deposition and channel change in the vegetation zone (식생대에서 유사의 퇴적과 하도변화 수치모의 분석)

  • Hwang, Hyo;Jang, Chang-Lae;Kang, Minseok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • This study analyzed the bed load transport and channel change on the vegetation zone through laboratory experiments and numerical simulations. To examine the effect of vegetation zone in the laboratory experiment, artificial vegetation zones made of acrylic sticks were installed in the experimental channel, and discharge conditions were adjusted to examine the bed load transport and channel change in the vegetation zone. Next, numerical simulations were performed by applying the same conditions as those of the laboratory experiment to the Nays2D model, a two-dimensional numerical model, and the applicability of the numerical model was examined by comparing the results with the results of the laboratory experiment. Finally, by applying a numerical model, the bed load transport and channel change according to the change in vegetation density were examined. As a result of examining the bed load transport and channel change in the vegetation zone according to the discharge condition change by applying the laboratory experiment and the numerical model, the results of the two application methods were similar. As the discharge increased, bed load from the upper stream was deposited inside the vegetation zone. On the other hand, on the other side of the vegetation zone, the flow was concentrated and erosion occurred. Also, the range of erosion increased in the downstream direction. As a result of examining the bed load transport and channel change according to the change in vegetation density, as the vegetation density increased, the bed load from the upper stream was deposited inside the vegetation zone. On the other hand, due to the increase in vegetation density, the flow was concentrated to the opposite side of the vegetation zone, erosion occurred.

Forecasting solute breakthrough curves through the unsaturated zone using artificial neural network

  • Yoon Hee-Sung;Hyun Yun-Jung;Lee Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.348-351
    • /
    • 2005
  • In this study, solute breakthrough curves through the unsaturated zone were predicted using artificial neural network (ANN) by numerical tests and laboratory experiments. In the numerical tests, applicability of ANN model to prediction of breakthrough curves was evaluated using synthetic data generated by HYDRUS-2D. An appropriate strategy of ANN application and input data form were recommended. The ANN model was validated by laboratory experiments comparing with HYDRUS-2D simulations. The results show that the ANN model can be an effective method for forecasting solute breakthrough curves through the unsaturated zone when hydraulic data are available.

  • PDF

Effect of orientation of fracture zone on tunnel behavior during construction using model test (실내 모형실험을 통한 시공 중 파쇄대의 공간적 분포가 터널거동에 미치는 영향)

  • Cho, Yun-Gyu;Shin, Seung-Min;Chung, Eun-Mok;Choi, Jung-Hyuk;Yoo, Chung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.189-204
    • /
    • 2015
  • This paper presents the results of reduced scale model tests on the effect of fault zone characteristics on the tunnel deformation behavior. A series of model tests were carried out on deep tunnels considering different fault zone orientations and offset distance. The tunnelling process was simulated in the model tests using compressed air technique. During the tests, the tunnel and ground deformation were mainly monitored while reducing the pressure inside the tunnel and the relationship between the pressure level and the tunnel deformation were established. The results indicate that for a given offset distance the tunnel behavior is influenced the most when the fault zone dips vertically while smallest influence occurs when the fault zone dips 45 degrees.

Numerical Evaluation of the Rock Damaged Zone Around a Deep Tunnel (손상모델을 이용한 심부터널 주변암반의 손상영역 평가)

  • 장수호;이정인;이연규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.99-108
    • /
    • 2002
  • The nonlinear-brittle-plastic model derived from experiments as well as elastic and elasto-plastic models was applied to the analysis of the rock damaged zone around a highly stressed circular tunnel. The depths of stress redistribution and disturbed zone as well as the characteristic behaviors predicted from each numerical model were compared, As the magnitudes and stress differences of in situ stresses increased, influences of stress redistribution and stress disturbance on un(tiled region of rock mass also intensified. As a result, larger stress redistribution and disturbed zone as well as greater deviatoric stress and displacement were obtained by the nonlinear-brittle-plastic model rather than other conventional models such as elasto-plastic and elastic models. from such results, it was concluded that as the magnitudes and stress differences of in situ stresses increased, larger rock damaged zone might be predicted by the nonlinear-brittle-plastic model. Therefore, it is thought that the damage analysis may be indispensable far highly stressed tunnels.

A multi-phase model for predicting the effective chloride migration coefficient of ITZ in cement-based materials

  • Yang, C.C.;Weng, S.H.
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.239-252
    • /
    • 2013
  • Mortar microstructure is considered as a three-phase composite material, which is cement paste, fine aggregate and interfacial transition zone. Interfacial transition zone is the weakest link between the cement paste and fine aggregate, so it has a significant role to determine the properties of cementitious composites. In this study, specimens (w/c = 0.35, 0.45, 0.55) with various volume fractions of fine aggregate ($V_f$ = 0, 0.1, 0.2, 0.3 and 0.4) were cast and tested. To predict the equivalent migration coefficient ($M_e$) and migration coefficient of interfacial transition zone ($M_{itz}$), double-inclusion method and Mori-Tanaka theory were used to estimate. There are two stages to estimate and calculate the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$). The first stage, the data of experimental chloride ion migration coefficient ($M_s$) was used to calculate the equivalent migration coefficient of fine aggregate with interfacial transition zone ($M_e$) by Mori-Tanaka theory. The second stage, the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$) was calculated by Hori and Nemat-Nasser's double inclusion model. Between the theoretical and experimental data a comparison was conducted to investigate the behavior of interfacial transition zone in mortar and the effect of interfacial transition zone on the chloride migration coefficient, the results indicated that the numerical simulations is derived to the $M_{itz}/M_m$ ratio is 2.11~8.28. Additionally, thickness of interfacial transition zone is predicted from $10{\mu}m$, 60 to $80{\mu}m$, 70 to $100{\mu}m$ and 90 to $130{\mu}m$ for SM30, M35, M45 and M55, respectively.

레이저 표면경화처리에서 빔의 형태에 따른 경화층 크기에 관한 연구

  • 김재웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.13-17
    • /
    • 1993
  • Analytical models for the prediction of the size of hardened zone in laser surface hardening are presented. The models are based on the solutions to the problem of three-dimensional heat flow in plates with infinite thickness. The validity of the model was tested on medium carbon steel for Gaaussian mode of beam. Then the model for rectangular beam was used for the prediction of the size of harened zone on various hardening process parameters. From the calculation results it appeared that the size and shape of the hardened zone are strongly dependent on process parameters suchas beam mode, beam size, and traverse speed.

The Spatial Charateristics of Ventilation Efficiency (실내환기효율의 공간적 변화특성에 관한 연구)

  • 김신도;김태식;이희관;이정주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.236-241
    • /
    • 1993
  • Recently, with the ourdoor air pollution, the indoor air pollution devided into living environment and working environment are raised as the problem of indoor space. Also, the more time lived in indoor space, the larger the influence of indoor air pollution. Therefore in this study, the spatial variation of ventilation efficiency was estimated through the experiment using a physical model. The experiment using a physical model. The experiment was conducted in two category; the central zone of ventilated air flow and the corner zone. As the result of experiment, high ventilation efficiency (90$\sim$108%) was shown in the central zone of ventilated air flow. Whereas low ventilation efficiency (46$\sim$77%) was shown in the corner zone. In conclusion, when the designing of ventilation was planned, the zone showed low ventilation efficiency should be considered.

  • PDF

Minimization of Shadow Zone for Hull Mounted Sonar (선체 고정형 소나의 음영 구역 최소화)

  • Lim, Se-Han;Han, Yun-Hoo;Jang, Chan-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.211-217
    • /
    • 2010
  • This paper introduces the Hull Mounted Sonar Vertical Scanning(HMS Verscan) technique to overcome the limitation of target detection in short range shadow zone. Numerical experiments were done with the HMS Verscan taking advantage of the vertical beamforming technique for two-dimension hydrospace(range-depth). For numerical experiments, ray model and high-frequency monostatic reverberation model were used. HMS Verscan increased a sound pressure level at the short range shadow zone through reflections at the sea surface and seafloor. Inclusion of the boundary scattering improved target detection due to the sound reflected into the shadow zone.

A Study on the Effect of Beam Mode on the Size of Hardened Zone in Laser Surface Hardening (레이저 표면경화처리에서 빔의 형태가 경화층 크기에 미치는 영향에 관한 연구)

  • Kim, J.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.64-72
    • /
    • 1993
  • Analytical models for the prediction of the size of hardened zone in laser surface hardening are presented. The models are based on the solutions to the problem of three-dimensional heat flow in plates with infinite thickness. The validity of the model was tested on medium carbon steel for Gaussian mode of beam. Then the model for rectagular beam was used for the predicition of the size of hardened zone on various hardening process parameters. From the calculation results it appeared that the size and shape of the hardened zone are strongly dependent on process parameters such as beam mode, beam size, and traverse speed.

  • PDF