• Title/Summary/Keyword: ZnTe:Cr

Search Result 7, Processing Time 0.021 seconds

Intermediate band solar cells with ZnTe:Cr thin films grown on p-Si substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.247.1-247.1
    • /
    • 2016
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, ZnO/ZnTe:Cr and ZnO/i-ZnTe structures were fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 10 J/cm2. The base pressure of the chamber was kept at approximately $4{\times}10-7Torr$. ZnTe:Cr and i-ZnTe thin films with thickness of 210 nm were grown on p-Si substrate, respectively, and then ZnO thin films with thickness of 150 nm were grown on ZnTe:Cr layer under oxygen partial pressure of 3 mTorr. Growth temperature of all the films was set to $250^{\circ}C$. For fabricating ZnO/i-ZnTe and ZnO/ZnTe:Cr solar cells, indium metal and Ti/Au grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. From the fabricated ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cell, dark currents were measured by using Keithley 2600. Solar cell parameters were obtained under Air Mass 1.5 Global solar simulator with an irradiation intensity of 100 mW/cm2, and then the photoelectric conversion efficiency values of ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cells were measured at 1.5 % and 0.3 %, respectively.

  • PDF

Room temperature ferromagnetism in diluted magnetic semiconductor $Zn_{l-x}Cr_xTe$

  • Ando, K.;Saito, H.;Zayets, V.;Yamagata, S.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.266-267
    • /
    • 2003
  • The most distinguishing character of diluted magnetic semiconductors (DMSs) is a strong interaction between sp-carriers and localized d-spins (sp-d exchange interaction). Recently many "room-temperature (RT) ferromagnetic DMS" have been reported. However, it should be noted that their sp-d exchange interactions have not been confirmed yet. The lack of a clear evidence of the sp-d exchange interaction causes the controversy on the origin of the observed ferromagnetism. For the detection of the sp-d exchange interaction, magneto-optical spectroscopy such as a magnetic circular dichroism (MCD) measurement is the most powerful tool. By using the MCD spectroscopy, we have shown the sp-d exchange interactions in Zn$_{l-x}$Cr$_{x}$Te. Recently, we have obtained the RT ferromagnetism in a Zn$_{l-x}$Cr$_{x}$Te (x = 0.20) film.0) film.

  • PDF

Long-Term Change of Heavy Metal Concentration in the Kumho River Water (금호강 수 중의 중금속류의 장기변도)

  • 배준웅;이상학;이성호
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.27-33
    • /
    • 2001
  • In order to study the long-term change of heavy metal concentrations in the Kumho river water, water analysis was conducted at 13sites surrounding the Kumho river system for 18times from September 1993 to August 1999. Analytical items for the study of water quality are Cu, Zn, Cd, Cr, Fe, Mn and Pb. The six year term studied in this work was divided into Part I and Part II, which covers the period from September 1993 to August 1996 and the period from September 1996 to August 1999, respectively. The mean concentrations of Cu, Zn, Cd, Cr, Fe, Mn and Pb in the unit of ppm for the Part I period showed 0.032, 0.025, 0.006, 0.050, 0.053 and 0.019, respectively. The mean concentrations of Cu, Zn, Cd, Cr, Fe, Mn and Pb in the unit of ppm for the Part II period showed 0.001, 0.001, 0.001, 0.004, 0.020, 0.002 and 0.002, respectively. The heavy metal concentrations in the Kumho river water for te second period were found to be decreased by 1/32, 1/25, 1/6, 1/1.5, 1/2.5, 1/26.5 and 1/9.5 for Cu, Zn, Cd, Cr, Fe, Mn and Pb, respectively. The present results clearly indicate that the water quality in the Kumho river is improving in terms of heavy metal contaminations.

  • PDF

Heavy Metal Adsorption of Untreated Barks by Treatment Conditions of Aqueous Solution (용액의 처리조건에 따른 미처리 수피에 의한 중금속 흡착)

  • Paik, Ki-Hyon;Kim, Dong-Ho;Kim, Seung-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.49-56
    • /
    • 2000
  • This study was designed to investigate the adsorption of heavy metal ions by untreated bark according to the treatment conditions of aqueous solution. The effect of temperature and pH of aqueous solution, particle size of bark, addition of light metal ions on the adsorption was examined, and the competition in adsorption among heavy metal ions was also evaluated. te The adsorption ratio of $Cu^{2+}$ and $Zn^{2+}$ increased with increasing themperature of solution from $-5^{\circ}C$ to $10^{\circ}C$ however, it was relatively constant at temperatures between $10^{\circ}C$ and $55^{\circ}C$. The adsorption ratio of $Cr^{6+}$ increased continuously with increasing the temperature of solution. The maximum adsorption ratio of $Cu^{2+}$, $Zn^{2+}$, and $Pb^{2+}$ was noted at pHs ranged 6 to 7; however, the adsorption ratio declined sharply on either sides of the optimum. The adsorption ratio of $Cr^{6+}$ decreased continuously with increasing the pH of solution. The adsorption ratio increased as decreasing the particle size of bark, and there was little differences in adsorption tendency between pine and oak bark. By the addition of $Ca^{2+}$ or $Mg^{2+}$(10~25 ppm), the adsorption ratio of $Cu^{2+}$ and $Zn^{2+}$ increased. An increase of the adsorption ratio was higher in oak bark than in pine bark. However, the adsorption ratio of $Pb^{2+}$ and $Cr^{6+}$ was not affected by the addition of light metal ions. As the mixed solution of 2 or 3 kinds of heavy metal ions($Cu^{2+}$, $Zn^{2+}$, $Pb^{2+}$) was treated with the untreated bark, the adsorption of $Zn^{2+}$ decreased considerably because of the competitive adsorption among heavy metal ions. Also the adsorption of $Cu^{2+}$ was more and less reduced. However the adsorption of $Pb^{2+}$ was not affected by the presence of other heavy metal ions.

  • PDF

Magnetite and Scheelite-Bearing Skarns in Ulsan Mine, Korea (울산 광산의 철-텅그스텐 스카른화작용)

  • Choi, Seon-Gyu;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.41-54
    • /
    • 1993
  • The Ulsan Fe-W deposit, which can be classified as a calcareous skarn deposit, is represented by ore pipe consisting principally of magnetite and lesser amounts of scheelite with minor sulphides, sulphosaits, arsenides, sulpharsenides, etc. At Ulsan mine, metasomatic processes of skarn growth may be divided broadly into two stages based on the paragenetic sequence of calc-silicate minerals and their chemical composition; early and late skarn stages. Early stage has started with the formation of highly calcic assemblages of wollastonite, diopsidic clinopyroxene and nearly pure grossular, which are followed by the formation of clinopyroxenes with salite to ferrosalite composition and grandite garnets with intermediate composition. Based on these calc-silicate assemblages, the temperatures of early skarn formations have been in the ranges of $550^{\circ}$ to $450^{\circ}$. The calc-silicate assemblages formed during the earlier half period of late skarn stage show the enrichment of notable iron and slight manganese, and the depletion of magnesium; clinopyroxenes are hedenbergitic, and grandite garnets are andraditic. The formation temperatures during this skarn stage are inferred to have been in the range of $430^{\circ}$ to $470^{\circ}C$ at low $X_{CO_2}$ by data from fluid inclusions of late andraditic garnets. The later half period of late skarn stage is characterized by the hydrous alteration of pre-existing minerals and the formation of hydrous silicates. The main iron-tungsten mineralization representing prominent deposition of magnetite immediately followed by minor scheelite impregnation has taken place at the middle of early skarn stage, while complex polymetallic mineralization has proceeded during and after the late skarn stage. Various metals and semimetals of Fe, Ni, Co, Cu, Zn, As, Mo, Ag, In, Sn, Sb, Te, Pb and Bi have been in various states such as native metal, sulphides, arsenides, sulphosaits, sulpharsenides and tellurides.

  • PDF

Geology and Mineral Resources of Colombia (콜롬비아 지질 및 광물자원 현황)

  • Koh, Sang-Mo;Lee, Gill-Gae;You, Byoung-Woon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.245-252
    • /
    • 2011
  • 콜롬비아는 안데스 산맥의 북단에 위치하며 NS 방향의 단층대를 기준으로 지질 환경의 차이가 크다. 단층대를 기준으로 동부지역은 원생대 변성암류와 이를 피복하는 고생대 변성퇴적암류가 주로 분포하며, 서부 지역은 고생대 퇴적암류, 중생대 화성암류, 제 3 기 화산양류 및 퇴적암류가 주로 분포한다. 지화학이상대는 6개 그룹으로 분류되며, 철 (Fe), 귀금속(Au, Ag, Pt), 기초금속(Cu, Pb, Zn), 희유금속(Sn, Cr, Co, Mn, Mo, Ni, Nb, W, V, Mg, Ti, Be, REE, Ga, Zr, Hf, Se, Te, Ta, Cd, In, Li 등) 빛 핵원료자원인 U 이상대로 구성된다. 콜롬비아의 주요 부존자원은 석탄, 니켈, 금 및 에메랄드이다. 에메랄드, 석탄 및 니켈은 세계적인 매장규모와 생산량을 보인다. 콜롬비아는 탐사가 거의 수행되지 않은 지역이 전 국토의 49%에 달해 광물부존 잠재성은 현재보다 크게 높을 것으로 보인다. 따라서 최근 콜롬비아와의 광물자원 협력이 강화되고 있는 시점에서 미탐사 지역을 대상한 공동탐사를 지화학 이상대가 확인된 지역을 중심으로 수행하여 신규광체를 확보하고, 광물자원 협력을 강화함으로써 공동개발 여건을 마련할 필요가 있다고 판단된다.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF