• Title/Summary/Keyword: ZnS substrate

Search Result 302, Processing Time 0.043 seconds

Characteristic Analysis of Poly(4-Vinyl Phenol) Based Organic Memory Device Using CdSe/ZnS Core/Shell Qunatum Dots

  • Kim, Jin-U;Kim, Yeong-Chan;Eom, Se-Won;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.289.1-289.1
    • /
    • 2014
  • In this study, we made a organic thin film device in MIS(Metal-Insulator-Semiconductor) structure by using PVP (Poly vinyl phenol) as a insulating layer, and CdSe/ZnS nano particles which have a core/shell structure inside. We dissolved PVP and PMF in PGMEA, organic solvent, then formed a thin film through a spin coating. After that, it was cross-linked by annealing for 1 hour in a vacuum oven at $185^{\circ}C$. We operated FTIR measurement to check this, and discovered the amount of absorption reduced in the wave-length region near 3400 cm-1, so could observe decrease of -OH. Boonton7200 was used to measure a C-V relationship to confirm a properties of the nano particles, and as a result, the width of the memory window increased when device including nano particles. Additionally, we used HP4145B in order to make sure the electrical characteristics of the organic thin film device and analyzed a conduction mechanism of the device by measuring I-V relationship. When the voltage was low, FNT occurred chiefly, but as the voltage increased, Schottky Emission occurred mainly. We synthesized CdSe/ZnS and to confirm this, took a picture of Si substrate including nano particles with SEM. Spherical quantum dots were properly made. Due to this study, we realized there is high possibility of application of next generation memory device using organic thin film device and nano particles, and we expect more researches about this issue would be done.

  • PDF

Flexible quantum dot solar cells with PbS-MIx/PbS-BuDT bilayers

  • Choe, Geun-Pyo;Yang, Yeong-U;Yun, Ha-Jin;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.2-347.2
    • /
    • 2016
  • Recently, in order to improve the performance of the colloidal quantum dot solar cells (CQDSCs), various efforts such as the modification of the cell architecture and surface treatment for quantum dot (QD) passivation have been made. Especially, the incorporation of halides into the QD matrix was reported to improve the performances significantly via passivating QD trap states that lower the life-time of the minority-carrier. In this work, we fabricated a lead sulfide (PbS) QD bilayer treated with different ligands and utilized it as a photoactive layer of the CQDSCs. The bottom and top PbS layer was treated using metal iodide ($MI_x$ and butanedithiol (BuDT), respectively. All the depositions and ligand treatments were carried out in air using layer-by-layer spin-coating process. The fabrication of the active layers as well as the n-type zinc oxide (ZnO) layer was successfully carried out on the bendable indium-tin-oxide (ITO)-coated polyethylene terephthalate (PET) substrate, which implies that this technique can be applied to the fabrication of flexible and/or wearable solar cells. The power conversion efficiency (PCE) of the CQDSCs with the architecture of $PET/ITO/ZnO/PbS-MI_x/PbS-BuDT/MoO_x/Ag$ reached 4.2 %, which is significantly larger than that of the cells with single QD (PbS-BuDT) layer.

  • PDF

The optical properties of GZO and ZnO thin films deposited by RF magnetron sputtering (RF magnetron sputtering 법으로 증착된 GZO와 ZnO 박막의 광학적 특성)

  • HwangBoe, S.J.;Jeon, H.H.;Kim, G.C.;Lee, J.S.;Kim, D.H.;Choi, W.B.;Jeon, M.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.453-457
    • /
    • 2007
  • Zinc oxide (ZnO) and Ga doped zinc oxide (GZO) with different thickness in range of 10nm to 100nm are prepared on glass substrate by RF magnetron sputtering at room temperature. The structural and optical properties of the thin films is evaluated. The structural properties of ZnO and GZO are investigated by Tunneling Electron Microscopy (TEM) and scanning electron microscopy (SEM). Optical properties are also investigated by UV-VIS-NIR spectrophotometer (200$\sim$1400nm). The much larger grain size of ZnO compared to GZO decreased the light scattering at the grain boundary and improved the transmittance. The transmittance of ZnO is higher than that of GZO through all of the ranges of wavelengths. In case of over 50nm, we found that the transmittance of ZnO is 20% higher than that of GZO.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

The study of the characteristic of n-ZnO:In/p-Si(111) heterostructure using Pulsed Laser Deposition (PLD법으로 증착된 n-ZnO:In/p-Si(111) 이종접합구조의 특성연구)

  • Jang, B.L.;Lee, J.Y.;Lee, J.H.;Kim, J.J.;Kim, H.S.;Lee, D.W.;Lee, W.J.;Cho, H.K.;Lee, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.355-356
    • /
    • 2008
  • In this work, ZnO films doped with different contents of Indium (0.1at.%, 0.3at.%, 0.6at.%, respectively) were deposited on Si (111) substrate that has 1~20 $\Omega$cm by pulsed laser deposition (PLD) at $600^{\circ}C$ for 30min. The thickness of the films are about 250 nm. The structural, optical and electrical properties of the films were investigated using X-ray Diffraction (XRD), Atomic force microscope (AFM), Photoluminescence (PL) and Hall measurement. It has been found that RMS of the films is decreased and grain size is increased with increasing the contents of doped Indium. The results of the Photoluminescence properties were indicated that the films have UV emission about 380nm and shows a little red shitf with increasing contents of doped indium. The result of the Hall measurement shows that the concentration and resisitivity in doped ZnO are as changing as one order, respectively ${\sim}10^{18}/cm^2$, ${\sim}10^{-2}cm{\Omega}cm$.

  • PDF

Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

  • Huh, Joo-Youl;Hwang, Min-Je;Shim, Seung-Woo;Kim, Tae-Chul;Kim, Jong-Sang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1241-1248
    • /
    • 2018
  • The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) $SiO_2$-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at $460^{\circ}C$ and the variation in the contact angles (${\theta}_c$) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the $a-SiO_2$-covered steel exhibited nonreactive, nonwetting (${\theta}_c>90^{\circ}$) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the $a-SiO_2$ layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the $a-SiO_2$ layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and $SiO_2$, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

Characterization and Corrosion Behaviour of Zn-Sn Binary Alloy Coatings in 0.5 M H2SO4 Solution

  • Fatoba, O.S.;Popoola, A.P.I.;Fedotova, T.
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2015
  • This work examines the characterization and corrosion behaviour of laser alloyed UNSG10150 steel with three different premixed composition Zn-Sn binary powders using a 4.4 kW continuous wave (CW) Rofin Sinar Nd:YAG laser processing system. The steel alloyed samples were cut to corrosion coupons, immersed in sulphuric acid (0.5 M H2SO4) solution at 30℃ using electrochemical technique and investigated for its corrosion behaviour. The morphologies and microstructures of the developed coated and uncoated samples were characterized by Optic Nikon Optical microscope (OPM) and scanning electron microscope (SEM/EDS). Moreover, X-ray diffractometer (XRD) was used to identify the phases present. An enhancement of 2.7-times the hardness of the steel substrate was achieved in sample A1 which may be attributed to the fine microstructure, dislocations and the high degree of saturation of solid solution brought by the high scanning speed. At scanning speed of 0.8 m/min, sample A1 exhibited the highest polarization resistance Rp (1081678 Ωcm2 ), lowest corrosion current density icorr (4.81×10−8A/cm2 ), and lowest corrosion rate Cr (0.0005 mm/year) in 0.5 M H2SO4. The polarization resistance Rp (1081678 Ωcm2 ) is 67,813-times the polarization of the UNSG10150 substrate and 99.9972% reduction in the corrosion rate.

Study on the Annealing Effect and Magnetic Properties of a Zn0.7Mn0.3O Film (열처리 효과에 따른 Zn0.7Mn0.3O박막의 자기 특성 연구)

  • Kim, Y.M.;Kim, Y.;Yoon, M.;Park, C.S.;Lee, Y.S.;Jeon, M.S.;Park, I.W.;Park, Y.J.;Lyou, Jong H.;Kim, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.155-159
    • /
    • 2003
  • We report on the annealing effect and ferromagnetic characteristics of Zn$_{0.7}$Mn$_{0.3}$O film prepared by sol-gel method on the silicon (100) substrate using field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD) and superconducting quantum interference device (SQUID) magnetometry. Magnetic measurements show thatZn$_{0.7}$Mn$_{0.3}$O films exhibit ferromagnetism at 5 K revealing the coercive field of ∼110 Oe for as grown sample and 360, 1035 Oe for samples annealed at 700, 800 $^{\circ}C$, respectively. Our experimental evidence suggests that ferromagnetic precipitates of a manganese oxide may be responsible for the observed ferromagnetic behaviors of the film.he film.

Characterization of Al:ZnO thin films deposited at different oxygen pressure (산소 분위기압의 변화에 따른 Al:ZnO 박막의 특성)

  • No, I.J.;Kim, Il;Shin, P.K.;Song, J.H.;Kim, Y.W.;Kim, C.Y.;Jeung, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1349-1350
    • /
    • 2007
  • Epitaxial thin films of aluminum-doped zinc oxide (AZO) have been deposited on commercial corning glass using an Nd:YAG pulsed laser deposition technology. The structural, electrical and optical properties of these films were investigated as a function of oxygen pressure. The experimental results show that the electrical resistivity of films deposited at 5 mTorr with substrate temperature of $300^{\circ}C$ were $4.633{\times}10^{-4}$. The average transmission of AZO thin films in the visible range were over 90%.

  • PDF