• Title/Summary/Keyword: ZnS(Ag) 섬광체

Search Result 6, Processing Time 0.022 seconds

Study on preparation of a thin film type of ZnS(Ag) scintillator sheet for alpha-ray detection (얇은 필름 형태의 알파선 측정용 ZnS(Ag) 섬광 검출소재 제조 연구)

  • Seo, Bum-Kyoung;Jung, Yeon-Hee;Kim, Gye-Hong;Lee, Kune-Woo;Jung, Chong-Hun;Han, Myeong-Jin
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.389-393
    • /
    • 2006
  • The detector consisted of ZnS(Ag) scintillator and photomultiplier tube (PMT) is widely used as contamination monitor in the nuclear facilities. Such detectors are mainly manufactured by adhering the ZnS(Ag) powder onto the transparent plastic. In this study the preparation condition for ZnS(Ag) scintillator sheet using a simple method was established. The scintillator sheet was composed with a support polymer sheet and ZnS(Ag) scintillator layer. The base sheet was prepared by casting the polymer solution after solving the polymer with solvent and the scintillator layer was manufactured by printing the mixture solution with ZnS(Ag) and paste. It was found that the polysulfone(PSf) as a polymer for the base sheet and a cyano resin as a paste for adhering the ZnS(Ag) scintillator was suitable. Also, the prepared thin scintillator sheet had a sufficient mechanical strength, a optical transparency and an alpha-ray detection performance.

Development of ZnS(Ag)/plastic dual scintillator sheet for simultaneous alpha- and beta-ray counting (알파 및 베타선 동시측정용 ZnS(Ag)/플라스틱 이중섬광체 검출센서 개발)

  • Seo, Bum-Kyoung;Woo, Zu-Hee;Kim, Gye-Hong;Lee, Kune-Woo;Lee, Dong-Gyu;jung, Chong-Hun
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2008
  • Dual scintillator for simultaneous alpha- and beta-ray counting used by detection materials of a surface contamination monitor was developed. In this study, preparation method was not a heat melting method but a solvent method, by which the counting material was manufactured by dissolving the polymer materials with solvent. It was simplified the preparation process. Plastic scintillator for beta-ray counting was prepared by solidifying the casting solution mixed with organic scintillator, polymer, and solvent. ZnS(Ag) scintillator layer was prepared by screen printing the paste solution mixed with ZnS(Ag), paste, and solvent onto the plastic layer. The good counting ability for alpha- and beta-ray using the ZnS(Ag)/plastic dual scintillator prepared and possibility for the counting material of surface contamination monitor was confirmed.

Development of the ZnS(Ag)/BC-408 phoswich detector for monitoring radioactive contamination inside pipes (배관 내부 방사능 오염도 측정용 ZnS(Ag)/BC-408 phoswich 검출기 개발)

  • Kim, Gye-Hong;Park, Chan-Hee;Jung, Chong-Hun;Lee, Kune-Woo;Seo, Bum-Kyoung
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.123-128
    • /
    • 2006
  • A small radiation detection system is necessary for the direct characterization of alpha/beta-ray contamination inside pipes generated during the decommission of a nuclear facility. In this work, the new type phoswich detector consisting of the ZnS(Ag) and plastic scintillator for ${\alpha}/{\beta}$ simultaneous counting was designed as part of a development of a equipment capable of monitoring radiological contamination inside pipes. The optimum counting conditions in dimensions of scintillator and a detection system were experimentally confirmed and a performance of alpha/beta-ray discrimination was evaluated. As a result, optimum conditions of a detector suitable for monitoring radiological contamination inside pipes and a feasibility of application to pipe-inside were confirmed.

Effect of Coating Technique on the Characteristics of ZnS(Ag) Scintillation Composite for Alpha-ray Detection (알파선 측정용 ZnS(Ag) 섬광 복합체의 특성에 있어 도포방법이 미치는 영향)

  • Jung, Yeon-Hee;Park, So-Jin;Seo, Bum-Kyoung;Lee, Kune Woo;Han, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.604-608
    • /
    • 2006
  • Polymer composites for measuring the radioactive contamination are prepared by coating ZnS(Ag) powders as a scintillator on polysulfone base layer. The composites consist of the active layer for a scintillation reaction with radioactive wastes and the transparent support layer for transmittance of light photons emitted by scintillation in the active layer. The binding of the active layer, including ZnS(Ag), on the support layer is proceeded via coating with polysulfone as a binder, without any extra adhesive. The coating was obtained by either casting via a Doctor Blade as applicator or screen printing. The prepared composites feature a monolithic structure, resulting in the complete adhesion between two layers. The composite prepared by the casting technique using an applicator holds a good detection efficiency in measuring the alpha radionuclide, but its structure becomes fragile because of warping in morphology. On the contrary, the composite prepared by the screen printing shows a good detection capacity as well as a good stability in a mechanical shape.

Phoswich Detector for Simultaneous Measuring Alpha/beta Particles (알파/베타선 동시측정용 phoswich 검출기)

  • Kim, Gye-Hong;Park, Chan-Hee;Lee, Kune-Woo;Jung, Chong-Hun;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • The new type phoswich detector consisting of the ZnS(Ag) and plastic scintillator for alpha/beta-ray simultaneous counting was developed for monitoring radiological contamination inside pipes. The detection performance was estimated using the PSD (pulse shape discrimination) method as a function of distance between the scintillator and radioactive source. The attenuation of particles traveling through a thin film for preventing the detector from being contaminated was experimentally estimated. It is concluded from our investigation that the phoswich detector developed can provide a sufficient alpha/beta-ray discrimination. The application of a thin film for preventing the detector from being contaminated was proven to be feasible.

  • PDF