• Title/Summary/Keyword: ZnO element

Search Result 127, Processing Time 0.025 seconds

The Effects of Doping Hafnium on Device Characteristics of $SnO_2$ Thin-film Transistors

  • Sin, Sae-Yeong;Mun, Yeon-Geon;Kim, Ung-Seon;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.199-199
    • /
    • 2011
  • Recently, Thin film transistors (TFTs) with amorphous oxide semiconductors (AOSs) can offer an important aspect for next generation displays with high mobility. Several oxide semiconductor such as ZnO, $SnO_2$ and InGaZnO have been extensively researched. Especially, as a well-known binary metal oxide, tin oxide ($SnO_2$), usually acts as n-type semiconductor with a wide band gap of 3.6eV. Over the past several decades intensive research activities have been conducted on $SnO_2$ in the bulk, thin film and nanostructure forms due to its interesting electrical properties making it a promising material for applications in solar cells, flat panel displays, and light emitting devices. But, its application to the active channel of TFTs have been limited due to the difficulties in controlling the electron density and n-type of operation with depletion mode. In this study, we fabricated staggered bottom-gate structure $SnO_2$-TFTs and patterned channel layer used a shadow mask. Then we compare to the performance intrinsic $SnO_2$-TFTs and doping hafnium $SnO_2$-TFTs. As a result, we suggest that can be control the defect formation of $SnO_2$-TFTs by doping hafnium. The hafnium element into the $SnO_2$ thin-films maybe acts to control the carrier concentration by suppressing carrier generation via oxygen vacancy formation. Furthermore, it can be also control the mobility. And bias stability of $SnO_2$-TFTs is improvement using doping hafnium. Enhancement of device stability was attributed to the reduced defect in channel layer or interface. In order to verify this effect, we employed to measure activation energy that can be explained by the thermal activation process of the subthreshold drain current.

  • PDF

Properties of NiCuZn Ferrite by Variation of Element Materials (원료의 계열성분 변화에 따른 NiCuZn Ferrite 물성연구)

  • Kim, Tae-Hyoung;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.180-185
    • /
    • 2004
  • The electromagnetic properties and microstructures of the basic composition of (Ni$\sub$0.2/Cu$\sub$0.1/Zn$\sub$0.2/)$\sub$0.5/ (Fe$_2$O$_3$)$\sub$0.5/ were invested by changing of SO$_4$, Cl and NO$_3$ series. We were prepared by coprecipitation method and sintered at temperatures 950$^{\circ}C$, 1150$^{\circ}C$, l350$^{\circ}C$, respectively. When sintering at temperature 950$^{\circ}C$, Cl and NO$_3$ series became perfection sintering. On the other hand, SO$_4$ series showed perfection sintering at temperature 1150$^{\circ}C$. According to particle size analysis result, higher magnetic permeability and magnetization value were observed by Cl series than SO$_4$ or NO$_3$ series.

Characterization of Yttrium Doped Zinc Oxide Thin Films Fabricated by Spin-coating Method (스핀코팅법에 의해 제조되어진 Yttrium이 도핑된 ZnO 막의 특성)

  • Kim Hyun-Ju;Lee Dong-Yun;Song Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.457-460
    • /
    • 2006
  • Y doped zinc oxide (YZO) thin films were deposited on F doped $SnO_2$ (FTO) glass substrate by sol-gel method using the spin-coating system. A homogeneous and stable solution was prepared by dissolving acetate in the solution added diethanolamine as sol-gel stabilizer. YZO films were obtained after preheated on the hot-plate for 5minute before each coating; the number of coating was 3 times. After the coating of last step, annealing of YZO films performed at $450^{\circ}C$ for 30 minute. In order to confirming of a ultraviolet ray interruption and down-conversion effects, optical properties of YZO films, transmission spectrum and fluorescent spectrum were used. Also, for understanding the obtained results by experiment, the elestronic state of YZO was calculated using the density functional theory The results obtained by experiment were compared with calculated structure. The detail of electronic structure was obtained by the discrete variational Xa (DV-Xa) method, which is a sort of molecular orbital full potential method. The density of state and energy levels of dopant element were shown and discussed in association with optical properties.

Ruminal Solubility of Trace Elements from Selected Philippine Forages

  • Serra, S.D.;Serra, A.B.;Ichinohe, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.378-384
    • /
    • 1997
  • The ruminal solubility of copper (Cu), manganese (Mn), molybdenum (Mo), and zinc (Zn) in eight Philippine forages was studied. These forages were: 1) grasses: paragrass (Brachiaria mutica (Forsk.) Stapf), stargrass (Cynodon plectostachyum Pilger), and napiergrass (Pennisetum purpureum Schumach.); 2) creeping legumes: calopogonium or calopo (Calopogonium muconoides Desv.) and centrocema (Centrocema pubescens Benth.); 3) tree lequmes: gliricidia or kakawate (Gliricidia sepium (Jacq.) Walp.), leucaena or ipil-ipil (Leucaena leucocephala (Lam.) de Wit.), and sesbania or katuray (Sesbania grandiflora (L.) Poir). Nylon bags with samples were incubated for 0, 3, 6, 12, 24, 48 and 72h in three rumen cannulated sheep fed with timothy hay (Phleum pratense L.) at 2% body weight/d. The 0-h bags were washed with deionized water. There were species differences (p < 0.05) on the different solubilities of trace elements. At O-h incubation, the trend of solubility was Mo (54%) > Zn (43%) > Cu (38.7%) > Mn (29.5%). At 3-h incubation, all the elements except Mn had an average solubility above 50%. Combining particulate passage rate (1.9%/h) and various trace elements disappearance rates, the effective ruminal solubilization (ERS) of trace elements were computed. The ERS across species ranged from 44.6 to 89.9% for Cu, 29.9 to 84% for Mn, 66 to 95.1% for Mo, and 30.1 to 82.3% for Zn resulting to a trend of Mo > Zn > Cu > Mn.

Characterization of Chemical Bath Deposited ZnS Thin Films and Its application to $Cu(InGa)Se_2$ Solar Cells (용액성장법에 의한 황화아연 박막층 분석 및 이의 CIGS 태양전지로의 응용)

  • Shin, Dong-Hyeop;Larina, Liudmila;Yun, Jae-Ho;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.138-138
    • /
    • 2009
  • Recently, thin-film solar cells of Cu(In,Ga)$Se_2$(CIGS) have reached a high level of performance, which has resulted in a 19.9%-efficient device. These conventional devices were typically fabricated using chemical bath deposited CdS buffer layer between the CIGS absorber layer and ZnO window layer. However, the short wavelength response of CIGS solar cell is limited by narrow CdS band gap of about 2.42 eV. Taking into consideration the environmental aspect, the toxic Cd element should be replaced by a different material. It is why during last decades many efforts have been provided to achieve high efficiency Cd-free CIGS solar cells. In order to alternate CdS buffer layer, ZnS buffer layer is grown by using chemical bath deposition(CBD) technique. The thickness and chemical composition of ZnS buffer layer can be conveniently by varying the CBD processing parameters. The processing parameters were optimized to match band gap of ZnS films to the solar spectrum and exclude the creation of morphology defects. Optimized ZnS buffer layer showed higher optical transmittance than conventional thick-CdS buffer layer at the short wavelength below ~520 nm. Then, chemically deposited ZnS buffer layer was applied to CIGS solar cell as a alternative for the standard CdS/CIGS device configuration. This CIGS solar cells were characterized by current-voltage and quantum efficiency measurement.

  • PDF

Deping characteristics of the Bi-Sr-Ca-Cu-O ceramics (Bi-Sr-Ca-Cu-O 세라믹의 도우핑 특성)

  • 박용필;김영천;황석영
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • We investigated the effects of doping elements on the Bi-Sr-Ca-Cu-O ceramics. The doping elements can be classified into four groups depending on their supeconducting characteristics in the Bi-Sr-Ca-Cu-O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase. The third group of doping elements(P and K) have a tendency to decompose the superconducting phase and reduce the optimal sintering temperature. The fourth group of doping elements(B, Si, Sn and Ba) almost unaffected the superconductivity of the 2223 and 2212 phase.

  • PDF

Influence of Doping Elements on the. Formation of Superconducting Phase in the Bi-Sr-Ca-Cu-O System (Bi-Sr-Ca-Cu-O 계에 서 초전도상 형성에 미치는 도우핑 원소의 영향)

  • 양승호;정지인;박용필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.217-220
    • /
    • 1999
  • We investigated the effects of doping elements on the Bi-Sr-Ca-Cu-0 ceramics. The doping elements can be classified into groups depending on their supeconducting characteristics in the Bi -Sr-Ca-Cu -O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase.

  • PDF

Simulation of Piezoelectric Dome-Shaped-Diaphragm Acoustic Transducers

  • Han, Cheol-Hyun;Kim, Eun-Sok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • This paper describes the simulation of a micromachined dome-shaped-diaphragm acoustic transducer built on a $1.5{\mu}m$ thick silicon nitride diaphragm ($2,000{\mu}m$ in radius, with a circular clamped boundary on a silicon substrate) with electrodes and piezoelectric ZnO film in a silicon substrate. Finite element analysis with ANSYS 5.6 has been performed to analyze the static and dynamic behaviors of the transducer under both pressure and voltage loadings.

A Study on Rubber-Ferrite Composite for Electromagentic Absorber (전파흡수체용 Rubber-Ferrite Composite에 관한 연구)

  • 김동일;박연준;박재석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1996.09a
    • /
    • pp.111-116
    • /
    • 1996
  • To realize the RF layer of Rubber Ferrite-Air-Solid Ferrite(RF-A-F) that proposed by Y.Naito it is tried to grasp the formulation of composition by varying the ratio of mole and element of Complex Isotropic Ferrite Nix-A0.1-Zn(1-x-0.1)*Fe2O4 As a result it was found that the characteristics of the electromagnetic wave absorber constructed by the selected formulation of compositionin in RF-A-F type were improved.

  • PDF

Effect of Complex Agent NH3 Concentration on the Chemically Deposited Zn Compound Thin Film on the $Cu(In,Ga)Se_2$

  • Shin, Dong-Hyeop;Larina, Liudmila;Yun, Jae-Ho;Ahn, Byung-Tae;Park, Hi-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.35.1-35.1
    • /
    • 2010
  • The Cu(In,Ga)Se2(CIGS) thin film solar cells have been achieved until almost 20% efficiency by NREL. These solar cells include chemically deposited CdS as buffer layer between CIGS absorber layer and ZnO window layer. Although CIGS solar cells with CdS buffer layer show excellent performance, many groups made hard efforts to overcome its disadvantages in terms of high absorption of short wavelength, Cd hazardous element. Among Cd-free candidate materials, the CIGS thin film solar cells with Zn compound buffer layer seem to be promising with 15.2%(module by showa shell K.K.), 18.6%(small area by NREL). However, few groups were successful to report high-efficiency CIGS solar cells with Zn compound buffer layer, compared to be known how to fabricate these solar cells. Each group's chemical bah deposition (CBD) condition is seriously different. It may mean that it is not fully understood to grow high quality Zn compound thin film on the CIGS using CBD. In this study, we focused to clarify growth mechanism of chemically deposited Zn compound thin film on the CIGS, especially. Additionally, we tried to characterize junction properties with unfavorable issues, that is, slow growth rate, imperfect film coverage and minimize these issues. Early works reported that film deposition rate increased with reagent concentration and film covered whole rough CIGS surface. But they did not mention well how film growth of zinc compound evolves homogeneously or heterogeneously and what kinds of defects exist within film that can cause low solar performance. We observed sufficient correlation between growth quality and concentration of NH3 as complex agent. When NH3 concentration increased, thickness of zinc compound increased with dominant heterogeneous growth for high quality film. But the large amounts of NH3 in the solution made many particles of zinc hydroxide due to hydroxide ions. The zinc hydroxides bonded weakly to the CIGS surface have been removed at rinsing after CBD.

  • PDF