• Title/Summary/Keyword: ZnO

Search Result 5,879, Processing Time 0.041 seconds

Effect of ZnO buffer layer on the property of ZnO thin film on $Al_{2}O_{3}$ substrate (사파이어 기판 위에 증착된 ZnO 박막 특성에 대한 ZnO 버퍼층의 영향)

  • Kim, Jae-Won;Kang, Jeong-Seok;Kang, Hong-Seong;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.140-142
    • /
    • 2003
  • ZnO thin films are demanded for device applications, so ZnO buffer layer was used to improve for good properties of ZnO thin film. In this study, the structural, electrical and optical properties of ZnO thin films deposited with various buffer thickness was investigated by X-ray diffraction (XRD), Hall measurements, Photoluminescence(PL). ZnO buffer layer and ZnO thin films on sapphire($Al_{2}O_{3}$) substrate have been deposited $200^{\circ}C$ and $400^{\circ}C$ respectively by pulsed laser deposition. It is observed the variety of lattice constant of ZnO thin film by (101) peak position shift with various buffer thickness. It is founded that ZnO thin film with buffer thickness of 20 nm was larger resistivity of 200 factor and UV/visible of 2.5 factor than that of ZnO thin films without buffer layer. ZnO thin films with buffer thickness of 20 nm have shown the most properties.

  • PDF

Optical Properties of Al and Al2O3 Coated ZnO Nanorods (원자층증착법으로 ZnO:Al과 Al2O3를 코팅한 ZnO 나노막대의 광학적 특성)

  • Shin, Y.H.;Lee, S.Y.;Kim, Yong-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.385-390
    • /
    • 2010
  • We studied the optical characteristics of ZnO:Al and $Al_2O_3$ coated ZnO nanorods. When ZnO:Al is deposited around the undoped ZnO nanorods, thermal diffusion of Al into ZnO gives rise to decrease the binding energy of neutral donor bound exciton whereas an insulating Al2O3 is coated around ZnO, we found that semiconducor-insulator interface states play an important role in optical quenching.

Study of the Nitrogen-Beam Irradiation Effects on ALD-ZnO Films (ALD로 성장된 ZnO박막에 대한 질소이온 조사효과)

  • Kim, H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • ZnO, a wurtzite lattice structure, has attracted much attention as a promising material for light-emitting diodes (LEDs) due to highly efficient UV emission resulting from its large band gap of 3.37 eV, large exciton binding energy of 60 meV, and low power threshold for optical pumping at room temperature. For the realization of LEDs, both n-type ZnO and p-type ZnO are required. Now, n-type ZnO for practical applications is available; however, p-type ZnO still has many drawbacks. In this study, ZnO films were grown on glass substrates by using atomic layer deposition (ALD) and the ZnO films were irradiated by nitrogen ion beams (20 keV, $10^{13}{\sim}10^{15}ions/cm^2$). The effects of nitrogen-beam irradiation on the ZnO structure as well as the electrical property were investigated by using fieldemission scanning electron microscopy (FESEM) and Hall-effect measurement.

The Effect of ZnO Addition on the Electric Properties and Microstructure of $Pb(Mn_{1/3}Sb_{2/3})O_3-Pb(Zr_{0.52}Ti_{0.48})O_3$Ceramics ($Pb(Mn_{1/3}Sb_{2/3})O_3-Pb(Zr_{0.52}Ti_{0.48})O_3$계 세라믹스의 전기적 특성과 미세구조에 미치는 ZnO 첨가영향)

  • 김민재;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1108-1114
    • /
    • 1999
  • Microstructure and electrical properties of ZnO-doped (0-5 mol%) 0.05 Pb(Mn1/3Sb2/3)O3-0.95 PZT ceramics were investigated. Sintering temperature was decreased to 100$0^{\circ}C$ due to eutetic reaction between PbO and ZnO. Grain-size increased up to adding 1mol% ZnO and then decreased. Compositions of grain and grain-boundary were investigated by WDS. Lattice parameter was decreased with ZnO addition. Density increased with ZnO addition and reached to the maximum of 7.84(g/cm2) at 2 mol% ZnO. The effect of ZnO on electrical properties of PMS-PZT was investigated. At 3mol% ZnO addition electromechanical coupling factor(kp) was about 50% and relative dielectric constant($\varepsilon$33/$\varepsilon$0) was 997 Mechanical quality factor(Qm) decreased with ZnO addition. Lattice parameters and tetragonality(c/a) were measured to investigate relationship between the electric properties and substitution of Zn2+. At 3 mol% ZnO tetragonality was maximiged at c/a=1.0035 Curie temperature (Tc) decreased slightly with ZnO addition.

  • PDF

A Study on Properties of crystallized Glass in $ZnO-P_2O_5$ System ($ZnO-P_2O_5$계 결정화 유리의 물성에 관한 연구)

  • 박용완;연석주
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.2
    • /
    • pp.94-103
    • /
    • 1991
  • ZnO-$P_2O_5$ system glasses containing 45 to 60 mol% ZnO have been melted at$1200^{\circ}C$and crystallized through controlled heat treatment. The properties of the base glass and crystallized glass were examined with XRD. FTIR. density. thermal expansion, electric conductivity, hardness. The principal crystalline phase was identified as zinc metaphosphate [$Zn(PO_3)_2$ in crystallized glasses containing 45-55mol% ZnO and zinc pyrophosphate ($Zn_2P_2O_7$) in the sample of 60mol% ZnO with X - ray diffraction analysis. Thermal expansion coefficient and DC electrical conductivity were varied with direction of oriented crystalline in the samples containing 50-60mol% ZnO. This suggests the existance of the oriented crystalline.

  • PDF

Analysis on the V-I Curve of ZnO:As/ZnO:Al homo-junction LED (ZnO:As/ZnO:Al homo-junction LED의 V-I 특성 분석)

  • Oh, Sang-Hyun;Jeong, Yun-Hwan;Liu, Yan-Yan;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.410-411
    • /
    • 2007
  • To investigate the ZnO LED which are interested in the next generation of short wavelength LEDs and Lasers, the ZnO thin films were deposited by RF magnetron sputtering system. The p-type ZnO thin film, fabricated by means of the ampoule-tube method, was used to make the ZnO p-n junction, and its characteristics was analyzed. The ampoule-tube method was used to make the p-type ZnO based on the As diffusion, and the hall measurement was used to confirm that the p-type is formed. the current-voltage characteristics of the ZnO p-n junction were measured to confirm the rectification characteristics of a typical p-n junction and the low leakage voltage characteristics. Analysis of ZnO LED V-I curve will provide a very useful technology for producing the UV ZnO LED and ZnO-based devices.

  • PDF

Properties of ZnO Thin Films Using ZnO Buffer Layer (ZnO 완충층을 이용하여 증착시킨 ZnO 박막의 특성)

  • 방규현;황득규;이동희;오민석;최원국
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.224-227
    • /
    • 2001
  • ZnO buffer layers were used to grow ZnO films on c-plane sapphire substrates. The role of ZnO buffer layers in the growth of ZnO thin films on sapphire substrates was investigated by scanning electron microscopy, X-ray diffraction, and Photolumminescence(PL) measurements. At the optimized ZnO buffer layer thickness of 100 $\AA$, FWHM of $\theta$ -rocking curve of ZnO thin films was minimized to 0.73 degrees and room temperature PL spectra showed that deep level emission was not hardly seen. The optimization of the ZnO buffer layer thickness resulted in improvements of the surface morphology and crystalline quality of ZnO thin films.

  • PDF

Distinct Band Gap Tunability of Zinc Oxysulfide (ZnOS) Thin Films Synthesized from Thioacetate-Capped ZnO Nanocrystals

  • Lee, Don-Sung;Jeong, Hyun-Dam
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.376-386
    • /
    • 2014
  • Zinc oxysulfide nanocrystals (ZnOS NCs) were synthesized by forming ZnS phase on a ZnO matrix. ZnO nanocrystals (NCs) with a diameter of 10 nm were synthesized by forced hydrolysis in an organic solvent. As-synthesized ZnO NCs aggregated with each other due to the high surface energy. As acetic acid (AA) was added into the milky suspension of the aggregated ZnO NCs, transparent solution of well dispersed ZnO NCs formed. Finally ZnOS NCs were formed by adding thioacetic acid (TAA) to the transparent solution. The effect of recrystallization on the structural, optical and electrical properties of the ZnOS NCs were studied. The results of UV-vis absorption confirmed the band gap tunability caused by increasing the curing temperature of ZnOS thin films. This may have originated from the larger effective size due to the recrystallization of zinc sulfide (ZnS). From XRD result we identified that ZnOS thin films have a zinc blende crystal structure of ZnS without wurtzite ZnO structure. This is probably due to the small amount of ZnO phases. These assertions were verified through EDS of FE-SEM, XPS and EDS mapping of HR-TEM results; we clearly proved that ZnOS were comprised of ZnS and ZnO phases.

Low-temperature sintering and microwave dielectric properties of $ZnAl_2O_4$ with ZnO-$B_2O_3-SiO_2$ glass (ZnO-$B_2O_3-SiO_2$ 유리가 첨가된 $ZnAl_2O_4$의 저온 소결 및 마이크로파 유전 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Kim, Shin;Kim, Yun-Han;Lee, Joo-Sik;Kim, Kyung-Mi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.265-265
    • /
    • 2007
  • In the present work, we have studied low temperature sintering and microwave dielectric properties of $ZnAl_2O_4$-zinc borosilicate (ZBS, 65ZnO-$25B_2O_3-10SiO_2$) glass composites. The focus of this paper was on the improvement of sinterability, low dielectric constant, and on the theoretical proof regarding of microwave dielectric properties in $ZnAl_2O_4$-ZBS glass composites, respectively. The $ZnAl_2O_4$ with 60 vo1% ZBS glass ensured successful sintering below $900^{\circ}C$. It is considered that the non-reactive liquid phase sintering (NPLS) occurred. In addition, $ZnAl_2O_4$ was observed in the $ZnAl_2O_4$-(x)ZBS composites, indicating that there were no reactions between $ZnAl_2O_4$ and ZBS glass. $ZnB_2O_4\;and\;Zn_2SiO_4$ with the willemite structure as the secondary phase was observed in the all $ZnAl_2O_4$-(x)ZBScomposites. In terms of dielectric properties, the application of the $ZnAl_2O_4$-(x)ZBS composites sintered at $900^{\circ}C$ to LTCC substrate were shown to be appropriate; $ZnAl_2O_4$-60ZBS (${\varepsilon}_r$= 6.7, $Q{\times}f$ value= 13,000 GHz, ${\tau}_f$= -30 ppm/$^{\circ}C$). Also, in this work was possible theoretical proof regarding of microwave dielectric properties in $ZnAl_2O_4$-(x)ZBS composites.

  • PDF

Photoelectron Spectroscopy Study of the Semiconductor Electrode Nanomaterials for the Dye Synthesized Solar Cell (염료감응 태양전지 전극용 반도체 나노 물질의 광전자분광 연구)

  • Kim, Hyun Woo;Lee, Eunsook;Kim, D.H.;Seong, Seungho;Kang, J.-S.;Moon, S.Y.;Shin, Yuju
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.156-161
    • /
    • 2015
  • The electronic structures of the potential candidate semiconductor nanoparticles for dye-sensitized solar cell (DSSC), such as $ZnSnO_3$ and $Zn_2SnO_4$, have been investigated by employing X-ray photoemission spectroscopy (XPS). The measured X-ray diffraction patterns show that $ZnSnO_3$ and $Zn_2SnO_4$ samples have the single-phase ilmenite-type structure and the inverse spinel structure, respectively. The measured Zn 2p and Sn 3d core-level XPS spectra reveal that the valence states of Zn and Sn ions are divalent (Zn 2+) and tetravalent (Sn 4+), respectively, in both $ZnSnO_3$ and $Zn_2SnO_4$. On the other hand, the shallow core-level measurements show that the binding energies of Sn 4d and Zn 3d core levels in $ZnSnO_3$ are lower than those in $Zn_2SnO_4$. This work provides the information on the valence states of Zn and Sn ions and their chemical bonding in $ZnSnO_3$ and $Zn_2SnO_4$.