• 제목/요약/키워드: ZnGa2O4:Mn,O

검색결과 42건 처리시간 0.018초

Production of Biopolymer Flocculant by Bacillus subtilis TB11

  • Yoon, Sang-Hong;Song, Jae-Kyeung;Go, Seung-Joo;Ryu, Jin-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.606-612
    • /
    • 1998
  • A microbial flocculant-producing gram-positive bacterium, strain TE11, was isolated from soil samples, and was identified as Bacillus subtilis by using the Midi system, the Biolog system, 16S rDNA sequence analysis, and some physiological and morphological characteristics. The maximum flocculant capsular biopolymer of TE11 strain (BCP, 4.9mg/ml) was obtained when it was grown in GA broth medium containing 3% glutamic acid, 2% glycerol, 0.5% citric acid, 0.5% $NH_4$Cl, 0.05% $MgSO_4.7H_2O,\; 0.05%\;K_2HPO_4\;,\; and\; 0.004%\; FeC1_3. 6H_2O,\; pH 7.2,\; at\; 30^{\circ}C$ for 70 h with shaking. When glycerol was used as an additional carbon source in the GA medium, TE11 produced only flocculant BCP without any by-product. The flocculant (BCP) was found to aggregate suspended kaolin and activated charcoal powder without cations, and its flocculating activity was significantly enhanced by the addition of bivalent cations such as $Ca^{2+}.Zn^{2},\; and\; Mn^{2+}$. The flocculation activity by addition of $Ca^{2+}$ was high in an acidic pH 4.0. In the case of $Zn^{2+}$, high flocculating activity remained without significant loss in the broad range of pH 4.0 to 9.0.

  • PDF

VUV luminescence properties of a novel green-emitting $(Y,Gd)Ga_3(BO_3)_4$:Tb phosphor

  • Moon, Young-Min;Choi, Sung-Ho;Lim, Sang-Ho;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1561-1564
    • /
    • 2007
  • $Tb^{3+}-activated$ green-emitting $(Y,Gd)Ga_3(BO_3)_4$ phosphor has been investigated. The main absorption was in the $120{\sim}238$ nm and exhibited a green emission with the 545 nm and several peaks due to inner shell transition of $Tb^{3+}$ ion. With the optimized $Tb^{3+}$ concentrations, the maximum emission brightness was 90% of the $Zn_2SiO_4$:Mn phosphor.

  • PDF