• Title/Summary/Keyword: ZnCdO

Search Result 402, Processing Time 0.025 seconds

Hydrogenated In-doped ZnO Thin Films for the New Anode Material of Organic Light Emitting Devices: Synthesis and Application Test

  • Park, Young-Ran;Nam, Eun-Kyoung;Boo, Jin-Hyo;Jung, Dong-Geun;Suh, Su-Jeong;Kim, Young-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2396-2400
    • /
    • 2007
  • Transparent In-doped (1 at.%) zinc oxide (IZO) thin films are deposited by pulsed DC magnetron sputtering with H2 mixed Ar atmosphere on glass substrate without any heating process. Even at room temperature, highly c-axis oriented IZO thin films were grown in perpendicular to the substrate. The hydrogenated IZO (IZO:H) film isolated in H2 atmosphere for 30 min exhibited an average optical transmittance higher than 85% and low electrical resistivity of less than 2.7 × 10?3 Ω·cm. These values are comparable with those of commercially available ITO. Each of the IZO films was used as an anode contact to fabricate organic light-emitting diodes (OLEDs) and the device performances studied. At the current density of 1 × 103 A/m2, the OLEDs with IZO:H (H2) anode show excellent efficiency (11 V drive voltage) and a good brightness (8000 cd/m2) of the light emitted from the devices, which are as good as the control device built on a commercial ITO anode.

Separation of Optical Isomers of DNS-Amino Acids in High-Performance Liquid Chromatography (고성능 액체크로마토 그래피에 의한 Dansyl-아미노산 광학이성질체의 분리)

  • Sun Haing Lee;Tae Sub O;Kyung Sug Park
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.216-223
    • /
    • 1986
  • Separation of optical isomers of DNS derivatized amino acids by a reversed-phase high-performance liquid chromatography has been studied by adding a complex of an optically active amino acid (L-arginine) with the metal ion (Cu(II), Zn(II), Cd(II), Ni(II)) to the mobile phase. The separations are affected by the concentrations of acetonitrile, chelate and buffer. They are also affected by the pH and the kinds of metal and buffer. A separation mechanism, which is based on steric effect of the ligand exchange reaction for the formation of ternary complexes by the D,L-DNS-amino acids and the chiral additive associated with the stationary phase, is proposed to interpret the elution behaviors of D, L-dansyl-amino acids.

  • PDF

Feed Hygiene and Meat Safety of Cattle Fed Processed Rice Hulls-bedded Broiler Litter

  • Kwak, W.S.;Huh, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1509-1517
    • /
    • 2004
  • A study was conducted to determine the safety of feeding processed broiler litter (BL) to beef cattle. The litter was processed by deepstacking, ensiling and composting. The health issues addressed relevant to the safety of feeding litter included pathogenic bacteria, mycotoxins, heavy metals, medicinal drugs and pesticide residues. Exp. 1 evaluated the feed hygiene of processed rice hulls-bedded BL. The presence of pathogenic bacteria in BL was determined before and after deepstacking. A total of 21 BL samples were collected over a 3-year period of commercial and experimental production of BL for beef cattle. Exp. 2 evaluated the safety of meat of cattle fed deepstacked BL. In Exp. 1, there were no pathogenic bacteria, such as coliform, E. coli, E. coli O157:H7, Salmonella, Listeria and Proteus, in deepstacked BL. Levels of heavy metals (Cu, Fe, Mn and Zn) and toxic heavy metals (As, Pb, Cd and Hg) were lower than the commercial feed tolerances. Aflatoxin, medicinal drug and pesticide residues were detected at extremely low levels. In Exp. 2, the meat of the BL-fed animals exhibited few differences in all analyzed items from that of the control group, showing safety from pathogenic microorganisms and heavy metals. When BL was withdrawn for 14 days prior to slaughtering the BLfed cattle, no medicinal drug residues were detected in the meat. Pesticides in the tissues of either group of animals were much lower than the tolerances. In conclusion, processed rice hulls-bedded BL and the meat of cattle fed BL were safe from the potential hazards of pathogenic bacteria, heavy metals, aflatoxin, medicinal drugs and pesticide residues.

비진공법을 이용한 CIGS광흡수층의 합성과 특성평가

  • Gwon, Yeong-Eun;Park, Jun-Tae;Im, Gi-Hong;Choe, Hyeon-Gwang;Jeon, Min-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.312.1-312.1
    • /
    • 2014
  • Chalcopyrite계 화합물 반도체인 $Cu(InGa)Se_2$ (CIGS)는 직접천이형 에너지 밴드갭과 전파장 영역에 대하여 높은 광흡수계수($1{\times}$[10]^5/cm)를 가지므로 두께 $1{\sim}2{\mu}m$인 박막형태으로 고효율의 태양전지 제조가 가능하다. 또한, 박막공정의 저가 가능성을 나타내면서 전세계적으로 많은 연구와 관심을 받고 있고, 현재 상용화되어 있는 결정질실리콘 태양전지를 대체할만한 재료로 주목 받고 있다. 일반적으로, CIGS박막형 태양전지 구성은는 유리를 기판으로 하여 5개의 단위 박막인 Mo 후면전극, p형 반도체 CIGS 광흡수층, n형 반도체 CdS 버퍼층, doped-ZnO 상부 투명전극, $MgF_2$ 반사방지막으로 이루어진다. 이들 중에서 태양전지의 에너지 변환효율에 결정적인 영향을 미치는 구성된다. CIGS 광흡수층의 제조는 크게 진공법과 비진공방법으로 나뉜다. 현재까지 보고된 문헌에 따르면 CIGS 박막형 태양전지의 경우에 동시증발법으로 20.3%의 에너지 변환효율을 보였지만,는데, 이는 진공장비 특성상 공정단가가 높고 대면적화가 어렵다는 단점을 가진다. 따라서, 비진공법을 이용하여 광흡수층 제작하는 것이 기술적으로 진보할 여지가 크다고 볼 수 있다. 반면 현재 상용화되어 있는 결정질실리콘 태양전지를 대체할만한 방법으로 주목 받고 있는 비진공을 이용한 저가공정은 최근 15.5%의 에너지 변환효율이 보고 되었다. 비진공법에는 전계를 이용한 증착법 및 스프레이법으로 나뉘며, 이들 광흡수층 재료의 화학적 합성은 III족 원소인 In, Ga의 함량비에 따라 광흡수층의 에너지 밴드갭(1.04~1.5 eV) 조절이 가능하다. 따라서, 본 연구에서는 비진공법에 사용되는 CIGS재료의 화학적 합성조건을 변화시켜 III족 원소의 조성비 조절을 시도하였다. CIGS 분말 시료의 입자 형태와 크기를 FE-SEM을 이용하여 관찰하였고, 화합물의 성분비를 EDX 및 XRD 분석을 통해 Ga 함량에 따른 구조적 차이를 비교해 보았다.

  • PDF

Mineral Contents of Underground Vegetables Produced in Different Regions of Korea (국내산 식용 지하 부위 채소의 생산지역에 따른 무기질 성분 함량에 관한 연구)

  • 장경미;이미순
    • Korean journal of food and cookery science
    • /
    • v.16 no.5
    • /
    • pp.425-430
    • /
    • 2000
  • This study was carried out to estimate mineral contents of some underground vegetables including potatoes, sweet-potatoes, carrots, radishes, onions, and garlics produced in Korea using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). According to the measurements, the contents of Na, Mg, Al, K, Ca, Mn, Fe, Zn, and P in Korean underground vegetables were variable depending upon producing areas and individual plants. Compared with other underground vegetables, the contents of Na in carrots and lotus roots were quite high. The contents of Cd, Ag Co. and Sr appeared to be below hazard levels. It is expected that this study can be used to calculate the mineral intake from underground vegetables.

  • PDF

Physicochemical Characteristics of Dredged Soils in Reservoirs (저수지 준설대상 토양의 이화학적 특성)

  • 손재권;구자웅;최진규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.96-107
    • /
    • 1997
  • This study was carried out to examine the physicochemical characteristics of dredged soils in reservoirs. Surveys and analyses of basic materials were made on 241 of 2,328 reservoirs in Chonbuk province through 2 years from December 1994 to November 1996. The results of this study are summarized as follows : 1. Soils were classified as 15 types according to physical properties, and some soils contain comparatively high percentage of sand and gravel. Considering only soil textures, useful and economical soils as aggregate are approximately 25% in all, and the other soils are arable for farm planting. 2. The results of chemical analyses of soils showed on the average 5.9 in pH, 1.lmmhos/cm in ECe, 14.6me/l00g in CEC, 460.0ppm in T-N, 119.0ppm in T-P, 264.9ppm in K, 134.2ppm in Na, l,335.0ppm in Ca, 575.9ppm in Mg, 486.Sppm in Fe, 57.7ppm in Mn, 3.3ppm in Cu, 21.9ppm in Zn, 0.49ppm in As, 0.34ppm in Cd, 0.O3ppm in Hg, 1.7% in OM, respectively. 3. General chemical components, heavy metals, organic matter contents were analyzed as similar to tlie mean values of common soils, therefore it was considered to be no significant effects on crop growth in the chemical properties. 4. Accodingly, the physicochemical characteristics of soils ought to be analyzed accurately before dredging for effective using of dredged soils. And it will be more effective, if the dredged soils are used with proper balance among each content of components with considering to the physicochemical properties of common soils.

  • PDF

Tunisian phosphogypsum tailings: Assessment of leaching behavior for an integrated management approach

  • Zmemla, Raja;Sdiri, Ali;Naifar, Ikram;Benjdidia, Mounir;Elleuch, Boubaker
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.345-355
    • /
    • 2020
  • This study has been carried out to evaluate the leaching behavior of Tunisian phosphogypsum (PG) tailings in Skhira city (southern Tunisia). Two PG samples, including old and freshly deposited samples, were characterized in terms of physical, geotechnical, mechanical, chemical and mineralogical properties. Special attention was paid to their leaching behavior when subjected to standard leaching tests. Our results indicated that both samples are mainly composed of more than 31.85% CaO and 31.4% SO3, indicating the predominance of gypsum. This was further confirmed by XRD patterns that revealed the presence of characteristic reflections of gypsum, brushite, quartz and Maladrite. Compressive strength after 90 d exceeded 769 kPa, but still lower than that of natural sand (1,800 kPa). Leaching test was proposed as an appropriate method to determine the released contaminants from PG. The obtained results showed that Fluorine and Phosphorus are the most released elements from PG with 40 and 30%, respectively. The released Se, Cd, and Zn were the only trace elements that exceeded the threshold limits. It seemed that leached element concentrations were independent aging or particle size of the PG. Based on the assessment of leaching behavior, an integrated management approach of the PG deposits was proposed.

Assessment of the Pollution Levels of Organic Matter and Metallic Elements in the Intertidal Surface Sediments of Aphae Island (압해도 조간대 표층퇴적물의 유기물 및 금속원소 오염도 평가)

  • Hwang, Dong-Woon;Park, Sung-Eun;Kim, Pyoung-Jung;Koh, Byoung-Seol;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.759-771
    • /
    • 2011
  • We evaluated the pollution levels of organic matter and metallic element (Fe, Cu, Pb, Zn, Cd, Ni, Cr, Mn, As, and Hg) in the intertidal surface sediments of Aphae Island using several sediment quality guidelines (SQGs) and assessment techniques for sediment pollution. Based on the textural composition of sediment, the surface sediments were classified into two main sedimentary facies: slightly gravelly mud and silt. The concentrations of chemical oxygen demand (COD) and acid volatile sulfide (AVS) in the sediments ranged from 4.6-9.9 (mean $7.4{\pm}1.1$) $mgO_2/g{\cdot}dry$ and from ND-0.53 (mean $0.04{\pm}0.10$) mgS/$g{\cdot}dry$, respectively. These values were considerably lower than those reported from a farming area in a semi-enclosed bay of Korea and for SQGs in Japan. The metallic element concentrations in the sediments varied widely with the mean grain size and organic matter content, implying that the concentrations of metallic elements are influenced mainly by secondary factors, such as bioturbation, the resuspension of sediment, and anthropogenic input. The overall results for the comparison with SQGs, enrichment factor (EF), and geoaccumulation index ($I_{geo}$) indicate that the surface sediments are slightly polluted by Cr and Ni, and moderately polluted by As. Our results suggest that the intertidal surface sediments of Aphae Island are not polluted by organic matter or metallic elements and the benthic conditions are suitable for healthy organisms.

Photovoltaic Properties of Cu(In1Ga)Se2Thin film Solar Cells Depending on Growth Temperature (성장온도에 따른 Cu(In1Ga)Se2박막 태양전지의 광전특성 분석)

  • 김석기;이정철;강기환;윤경훈;송진수;박이준;한상옥
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.102-107
    • /
    • 2003
  • This study puts focus on the optimization of growth temperature of CIGS absorber layer which affects severely the performance of solar cells. The CIGS absorber layers were prepared by three-stage co-evaporation of metal elements in the order of In-Ga-Se. The effect of the growth temperature of 1st stage was found not to be so important, and 350$^{\circ}C$ to be the lowest optimum temperature. In the case of growth temperature at 2nd/3rd stage, the optimum temperature was revealed to be 550$^{\circ}C$. The XRD results of CIGS films showed a strong (112) preferred orientation and the Raman spectra of CIGS films showed only the Al mode peak at 173cm$\^$-1/. Scanning electron microscopy results revealed very small grains at 2nd/3rd stage growth temperature of 480$^{\circ}C$. At higher temperatures, the grain size increased together with a reduction in the number of the voids. The optimization of experimental parameters above mentioned, through the repeated fabrication and characterization of unit layers and devices, led to the highest conversion efficiency of 15.4% from CIGS-based thin film solar cell with a structure of Al/ZnO/CdS/CIGS/Mo/glass.

Involvement of Lipopolysaccharide of Bradyrhizobium japonicum in Metal Binding

  • Oh, Eun-Taex;Yun, Hyun-Shik;Heo, Tae-Ryeon;Koh, Sung-Cheol;Oh, Kye-Heon;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.296-300
    • /
    • 2002
  • Bacterial cell surface components are the major factors responsible for pathogenesis and bioremediation. In particular, the surface of a Gram-negative bacterium cell has a variety of components compared to that of a Gram-positive cell. In our previous study, we isolated an isogenic mutant of Bradyrhizobium japonicum, which exhibited altered cell surface characteristics, including an increased hydrophobicity. Polyacrylamide gel electrophoretic analysis of the lipopolysaccharide (LPS) in the mutant demonstrated that the O-polysaccharide part was completely absent. Meanwhile, a gel permeation chromatographic analysis of the exopolysaccharide (EPS) in the mutant demonstrated that it was unaltered. Since LPSs are known to have several anion groups that interact with various cation groups and metal ions, the mutant provided an opportunity to examine the direct role of LPS in metal binding by B. japonicum. Using atomic absorption spectrophotometry, it was clearly demonstrated that LPS was involved in metal binding. The binding capacity of the LPS mutant to various metal ions $(Cd^{2+},\;Cu^{2+},\;Pb^{2+},\;and\;Zn^{2+})$ was 50-70% lower than that of the wild-type strain. Also, through an EPS analysis and desorption experiment, it was found that EPS and centrifugal force had no effect on the metal binding. Accordingly, it would appear that LPS molecules on B. japonicum effect the properties, which precipitate more distinctly metal-rich mineral phase.