• Title/Summary/Keyword: Zn-SOD

Search Result 292, Processing Time 0.023 seconds

Oxygen Toxicity of Superoxide Dismutase-Deficient Saccharomyces cerevisiae by Paraquat (Paraquat에 의해 유도된 Superoxide Dismutase 결핍 효모의 산소 독성)

  • 김지면;남두현용철순허근
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.561-567
    • /
    • 1995
  • Using superoxide dismutase (SOD)-deficient mutants of Saccharomyces cerevisiae, the oxygen toxicity induced by paraquat was studied. In aerobic culture condition, yeasts lacking MnSOD (milochondrial SOD) showed more significant growth retardation than CuZnSOD (cytoplasmic SOD)-deficient yeasts. However, not so big differences in growth pattern of those mutants compared with wild type were observed under anaerobic condition. When exposed to paraquat, the growth of yeasts lacking CuZnSOD was severely affected by higher than 0.01mM of paraquat in culture medium. By the analysis of several cellular components ivolved in free radical generating and scavenging system, it was found that, under aerobic condition, the content of lipid peroxides in cell membrane as well as cellular activity of glutathion peroxidase of CuZnSOD-deficient mutants was increased in the presence of paraquat, although significant decrease of catalase activity was observed in those stratns. In MnSOD-deficient yeast, however, increment in cellular activity of glutathion peroxldase and catalase by paraquat was observed without any deterioration of membrane lipid. It implies that the lack of mitochondrial SOD could be compensated by both of glutathion peroxldase and catalase, but that only glutathion peroxidase might act for CuZnSOD in cytoplasm. In contrast, all of SOD-deficient mutants showed a significant decrease in catalase activity, but slight increase in the activities of glutathion peroxidase, when cultivated anaerobically in the medium containing paraquat. Nevertheless, any significant changes of lipid peroxides in cell membranes were not observed during anaerobic cultivation of SOD-deficient mutants. It suggests that a little amount of free radicals generated by paraquat under anaerobic condition could be sufficiently overcome by glutathion peroxidase but not by catalase.

  • PDF

Effect of Metals on Anti - Oxidase Activity in Persicaria vulgaris Webb. et Moq. (중금속이 봄여뀌(Persicaria vulgaris Webb. et Moq.)의 항산화효소활성에 미치는 영향)

  • Sung, Mi-Hyang;Jeong, Hyung-Jin;Kim, Kun-Woo;Kwak, Sang-Soo
    • Korean Journal of Weed Science
    • /
    • v.16 no.4
    • /
    • pp.346-353
    • /
    • 1996
  • To study the effects of metal ions on the activities of antioxidative enzymes, the activities of superoxide dismutase(SOD), peroxidase(POD), catalase(CAT) of Persicaria vulgaris has been studied after treating with Cd, Cu, Zn and Al. 1. The activities of SOD in leaf and stem were decreased, but that in root was increased. Among the metal ions studied in this report, Al gave the highest increase in SOD activity in root. 2. The activities of POD after treating with Cd or Cu did not show any significant differences. POD activities after treating with Zn and Al has been decreased, however, that in root showed increased activities after treating with Zn 5,000 ppm or Al 500 ppm. 3. The activity of CAT in leaf was decreased with every metals studied. The CAT activity in root was increased with increased concentration. The root treated with Al showed highest activity. 4. The presence of isozymes after treated metal ions has been studied in gel electrophoresis. The POD treated plant did not show any new isozymes, but the intensity of one of pre-existent band was increased. The SOD treated plant showed the several new isozymes.

  • PDF

Effects of Antioxidant on Reduction of Hindlimb Muscle Atrophy Induced by Cisplatin in Rats (항산화제가 시스플라틴에 의해 유발된 쥐의 뒷다리근 위축 경감에 미치는 영향)

  • Kim, Jin Il;Choe, Myoung-Ae
    • Journal of Korean Academy of Nursing
    • /
    • v.44 no.4
    • /
    • pp.371-380
    • /
    • 2014
  • Purpose: The purpose of this study was to examine the effects of Cu/Zn SOD on reduction of hindlimb muscular atrophy induced by cisplatin in rats. Methods: Forty-two rats were assigned to three groups; control group, Cisplatin (CDDP) group and cisplatin with Cu/Zn SOD (CDDP-SOD) group. At day 35 hindlimb muscles were dissected. Food intake, activity, withdrawal threshold, muscle weight, and Type I, II fiber cross-sectional area (CSA) of dissected muscles were measured. Relative SOD activity and expression of MHC and phosphorylated Akt, ERK were measured after dissection. Results: Muscle weight and Type I, II fiber CSA of hindlimb muscles in the CDDP group were significantly less than the control group. Muscle weight and Type I, II fiber CSA of hindlimb muscles, food intake, activity, and withdrawal thresholds of the CDDP-SOD group were significantly greater than the CDDP group. There were no significant differences in relative SOD activities of hindlimb muscles between the CDDP-SOD and CDDP groups. MHC expression and phosphorylated Akt, ERK of hindlimb muscles in the CDDP-SOD group were significantly greater than the CDDP group. Conclusion: Cu/Zn SOD attenuates hindlimb muscular atrophy induced by cisplatin through increased food intake and activity. Increment of phosphorylated Akt, ERK may relate to attenuation of hindlimb muscular atrophy.

Changes of Growth and Antioxidative Enzyme(SOD, APX, GR) Activities of Spinach Beet(Beta vulgaris var. cicla) Under Saline Condition (염 환경하에서 근대(Beta vulgaris var. cicla)의 생장과 항산화효소(SOD, APX, GR)의 활성변화)

  • 배정진;추연식;송승달
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.658-667
    • /
    • 2003
  • Antioxidative enzymes (superoxide dismutase; SOD, ascorbate peroxidase; APX, glutathione reductase; GR) play major roles in scavenging mechanism of reactive oxygen species which were involved in various stress conditions including salt. In order to investigate the relation between their growth responses (dry weight) and the changes of antioxidative enzymes activity, salt-tolerant spinach beet having 15cm of shoot length were treated with various salt levels (0, 50, 200, 1000 mM NaCl) for 24 hours. Spinach beet exhibited an increase in the activity of antioxidative enzymes by salt, the maximal activity at 200 mM NaCl and the lowest activity at 50 mM NaCl in 2 hrs. after treatments. As a result of PAGE, it has been confirmed that spinach beet contained 3 isoforms (Fe-SOD, CuZn-SOD and Mn-SOD) of SOD and main isoform was CuZn- SOD form. In case of APX, isoforms of the low molecular weight(No. 7, 8) were showed strong expression especially at 200 and 400 mM NaCl treatment. Meanwhile, GR did not show specific pattern of isoforms among the salt treatments. Especially, in case of 50 mM treatment, plant showed the lowest activity of SOD with the best growth, a low enzyme activity was induced by inactivation of the Mn-SOD. Therefore, we suggested that the decrease of SOD activity at a low salt level (50 mM NaCl) or the increase of enzyme activity at a high salt level (200 mM NaCl) may be related to expression of the Mn-SOD isoform. These antioxidative enzymes showed the increase of activity in a short time by salt addition. So, it is considered that spinach beet copes effectively with a stressful condition such as salt by operating effective antioxidative defense mechanism rapidly under high salt level.

High Glucose Potentiates the Alloxan-induced Cytotoxicity in Cultured Rat Insulinoma Cells (흰쥐 인슐린종세포에서 고농도 포도당의 Alloxan 독성 증강 효과)

  • 이병래;차종희;박재윤;고춘남;박평심
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.875-880
    • /
    • 2000
  • Reactive oxygen species are produced under diabetic conditions and possibly cause various forms of tissue damage in patients with diabetes mellitus. The aim of this study was to examine the effects of high glucose on the alloxan-induced beta cell injury. The insulinoma (RINm5F) cells were clutured either with high glucose (22.2 mM) or normoglucose (5.6 mM) in RPMI 1460 media for 3 days. The SOD activities were determined by spectrophotometric assay and nitroblue tetrazolium (NBT) stain. The effects of high glucose on the cytotoxicity of alloxan were also investigated in RINm5F cells and the cells viability were determined by 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) methods. Results showed that the CuZn-SOD activity was decreased but Mn-SOD activity was increased significantly in RINm5F cells cultured with high glucose (22.2 mM) media. The cytotoxicity of alloxan was increased by high glucose compared with normoglucose in RINm5F cells. Diethyl-dithiocarbarmate (DDC), as inhibitor of CuZn-SOC, also potentiate the alloxan-induced cytotoxocity in RINm5F cells. These results suggest that, in RINm5F cells, short term culture with high glucose media decreases Cu-Zn-SOD activity and the decreased activity of CuZn-SOD many one of the causative factors of beta-cell injury induced by high glucose.

  • PDF

Construction of Gene-Specific Primers for Various Antioxidant Isoenzyme Genes and Their Expressions in Rice (Oryza sativa L.) Seedlings Obtained from Gamma-irradiated Seeds

  • Kim, Jin-Hon;Chung, Byung-Yeoup;Kim, Jae-Sung;Wi, Seung-Gon;Yang, Dae-Hwa;Lee, Choon-Hwan;Lee, Myung-Chul
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.115-120
    • /
    • 2004
  • For the expression study of antioxidant isoenzyme genes in rice (Oryza sativa L.) plants, extensive searches for genes of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) isoforms were performed through the GenBank database. The genes for two cytosolic and one plastidic CuZn-SOD, one Fe-SOD, two Mn-SOD, two cytosolic and two chloroplastic (stromal and thylakoid) APX, and three CAT isoforms were available in japonica-type rice. These isoforms were named as cCuZn-SOD1, cCuZn-SOD2, pCuZn-SOD, Fe-SOD, Mn-SOD1, Mn-SOD2, cAPXa, cAPXb, Chl_sAPX, Chl_tAPX, CATa, CATb, and CATc, respectively. Since they shared a high degree of homology in the nucleotide and amino acid sequences, the gene-specific primers for the genes were designed directly from their full-length cDNAs found in the database except for the CATa gene. These primers were used in the RT-PCR analysis to investigate the differential expression of antioxidant isoenzyme genes in rice plants from the seeds irradiated with low doses (2, 4, 8, and 16 Gy) of gamma-radiation. The gammairradiation slightly increased the transcripts of pCuZn-SOD, while those of Fe-SOD, cAPXb, and CATb decreased. However, no substantial differences were observed in the expression of all the isoenzyme genes between the control and irradiated groups. In this study, gene specific primers for thirteen SOD, APX and CAT isoenzymes were constructed from the full-length cDNAs. The results of RT-PCR analysis obtained by using these primers suggests that the expression levels of SOD, APX, and CAT isoenzyme genes in rice seedlings were hardly affected by gamma-irradiation at the seed stage.

  • PDF

Induction of antioxygenic enzymes as defense systems in plant cells against low temperature stress : (II) $Mn^{+2}-induced$ SOD activation and enhancement of cold tolerance in rice seedlings (식물의 냉해에 대한 생체방어기구로서 항산소성 효소의 유도 : (II) $Mn^{+2}$이온에 의한 세포내 SOD의 활성화와 벼 유묘의 내냉성 향상)

  • Hahn, Chang-Kyun;Kim, Jong-Pyung;Jung, Jin
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.168-173
    • /
    • 1991
  • The uptake of $Mn^{+2}$, a metal cofactor Mn-SOD, by rice seedings resulted in not only a substantial increase in SOD activity in leaf tissues of the plants, but also a significant enhancement of their cold tolerance : the relative extent of the cold tolerance appeared to accord with relative level of the SOD activity. In contrast, $Fe^{+3},\;Cu^{+2}$ and $Zn^{+2}$, which are the cofactors of Fe-SOD and Cu/Zn-SOD, were found to be ineffective for increasing the SOD activity as well as for improving the chilling-resistant capacity of the plants. The results suggest that Mn-SOD, which is most likely induced by its substrate(superoxide) and activated by the presence of $Mn^{+2}$a at high level, is the enzyme acting as an active component of the defense system against low temperature stress in rice plants. In addition, the application of abscisic acid which has been know to protect to some extent certain plants from chilling injury brought about an increase in SOD activity in rice tissues, providing another affirmative information for the crucial role of SOD under the circumstance of cold stress in plants.

  • PDF

Effects of Fermented Mulberry Leaves (Morus alba L.) on Oxidative Modification of Antioxidnat Enzymes (항산화 효소의 산화적 변형에 뽕잎 발효물이 미치는 영향)

  • Kang, Jung Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.985-994
    • /
    • 2019
  • Muberry (Morus alba L.) leaves fermented with Hericium erinaceum mycelium (MA-HE) were assessed for the protection against oxidative modification of antioxidant enzymes, Cu,Zn-superoxide dismutase(SOD) and ceruloplasmin(CP). MA-HE were shown to significantly inhibited oxidative modifications and inactivations of Cu,Zn-SOD and CP induced by peroxyl radical. Antioxidant activity of MA-HE evaluated using peroxyl radical scavenging assays. MA-HE showed 44.03% of peroxyl radical scavenging activity at $100{\mu}g/mL$. Thus, MA-HE protect the antioxidant enzymes from oxidative damage by the scavenging peroxyl radicals. The results suggested that MA-HE was effectively removed reactive oxygen species in cells, thereby protecting cytotoxicity caused by oxidative stress.

Dietary Salmonella lysate affect on the antioxidant system(freshness) of broiler meats during 4$^{\circ}$C refrigeration (Salmonella lysate 첨가 사료가 저장중 계육 항산화계(신선도)에 미치는 영향)

  • Lee, Beom-Gyu;Im, Jin-Taek;Park, In-Gyeong;Choe, Do-Yeol;Choe, Jun-Yeong;Go, Tae-Song
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.60-61
    • /
    • 2006
  • Effect of dietary salmonella lysate in broiler chicks inoculated with Salmonella typhimurium on the antioxidant system(freshness) of broiler meats during 4$^{\circ}$C refrigeration was investigated. In Pectoral and leg muscle, regardless experimental diets, as the refrigeration day passed, CuZnSOD activity decreased gradually, while at 7d MnSOD activity and peroxide level raised and then lowered at 14d. MnSOD and peroxidase activity, however, had differed according to experimental diets. The results indicated that antioxidant system of broiler meats will be changed according to experimental diets(nutrients). As the CuZnSOD, MnSOD and peroxidase activity are responsible for proteolysis of muscle protein, it was concluded that change of antioxidant system during 4$^{\circ}$C storage explain the biological activity(freshness) of broiler meats.

  • PDF

Effects of ischemic preconditioning, KATP channel on the SOD activation and apoptosis in ischemic reperfused skeletal muscle of rat (허혈양상화와 KATP 통로가 허혈후 재관류된 흰쥐의 골격근육에서 SOD 활성 및 apoptosis에 미치는 영향)

  • Abn, Dong-choon;Paik, Doo-jin;Yang, Hong-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.5
    • /
    • pp.878-895
    • /
    • 1999
  • Ischemic preconditioing (IPC), i.e., a preliminary brief episode of ischemia and reperfusion, has been shown to reduce the cell damage induced by long ischemia and reperfusion. Superoxide radical which is produced during reperfusion after ischemia was recognized as a factor of the ischemic injury and it is dismutated into $H_2O_2$ and $O_2$ by two types of intracellular superoxide dismutase (SOD), Cu,Zn-SOD in cytoplasm and Mn-SOD in mitochondria. Recently oxygen free radicals are suggested to induce the apoptosis, however mechanism of the reduced apoptosis by ischemic preconditioing was unknown, while many studies performed in mammalian heart indicated that ATP-sensitive $K^+$ ($K_{APT}$) channel activation related with the protective effects. The aim of present study is to investigate 1) whether IP upregulate the Cu,Zn-SOD and Mn-SOD activities, and 2) whether ischemic preconditioning decreases apoptosis via $K_{APT}$ channel activation in timely reperfused skeletal muscle after long ishemia. The experimental animals, Sprague-Dawley rats weighing 250~300g, were divided into 8 groups; 1) control group, 2) ischemic preconditioning only groups, 3) pinacidil, a $K_{APT}$ channel opener, treatment only groups, 4) glibenclamide, a $K_{APT}$ channel blocker, treatment only groups, 5) ischemia groups, 6) ischemia after IPC groups, 7) ischemia and pinacidil treatment groups, and 8) IP and ischemia after glibenclamide pretreatment groups. Animals of the control group were administered with the vehicle (DMSO) alone. Pinacidil (1mg/kg) was administered intravenously 5 minutes after initiation of ischemia, and glibenclamide (0.5mg/kg) was injected intravenously 20 minutes before IPC. In rats that were ischemic preconditioned, the left common iliac artery was occluded for 5 minutes followed by 5 minutes of reperfusion by three times using vascular clamp. Ischemia was done by occlusion of the same artery for 4 hours. The specimens of left rectus femoris muscle were obtained immediately (0 hour), 12 hours, 24 hours after drug administrations, IP or ischemia and reperfusion. The immunoreactivities of SOD and its alterations were observed by use of sheep antihuman Cu,Zn-SOD and Mn-SOD antibodies on the $10{\mu}m$ cryosections. The incidencies of apoptosis were observed by TUNEL methods with in situ apoptosis detection kit on $6{\mu}m$ paraffine section. The results obtained were as follows : 1. After IPC, immunoreactivities of Cu,Zn-SOD mainly in the small-sized fibers were increased by 24 hours, that of Mn-SOD at 0 hour and 24 hours. 2. No significant changes in immunoreactivities of SOD was observed in the pinacidil and in the glibenclamide treatment only groups, and in the ischemia only groups. 3. The immunoreactivities of the Cu,Zn-SOD were increased in the ischemia after IPC groups and the ischemia and pinacidil treatment groups. 4. The immunoreactivities of the Cu,Zn-SOD in the IPC and ischemia after glibenclamide pretreatment groups were not increased except for the 12 hours reperfusion group. But, Mn-SOD immunoreactivities were increased in the 0 hours, 12 hours and 24 hours after reperfusion. 5. In the control group, the IPC only groups, and the pinacidil treatment only groups, negative or trace apoptotic reactions were observed, but the positive apoptotic reaction occured in the glibenclamide treatment groups. 6. Moderate or many number of apoptosis were revealed in the ischemia groups, and also the IPC and ischemia after glibenclamide pretreatment group except for 12 hours and 24 hours after reperfusion. However, the incidence of apoptosis was decreased in the ischemia after IPC groups and in the ischemia and pinacidil treatment groups. 7. There is a coincidence between the increase of Cu,Zn-SOD immunoreactivities and the decrease of apoptosis in the presence of ischemia and reperfusion. These results suggest that the protective effects of ishemic preconditioing may related to the SOD activation, and the ischemic preconditioning decreases the apoptosis partially via $K_{APT}$ channel activation in timely reperfused rat skeletal muscle. It is also suggested that inhibition of apoptosis by IPC may related with the SOD activation.

  • PDF