• Title/Summary/Keyword: Zn-Ni

Search Result 1,579, Processing Time 0.026 seconds

Local Structure Study of Ni in Ni-Zn Alloy Coating on Steel by X-ray Absorption Spectroscopy (X선 흡수 분광법을 이용한 Ni-Zn 도금 강판에서의 Ni의 국부 구조에 관한 연구)

  • Lee, Do-Hyung
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.202-205
    • /
    • 1998
  • X-ray absorption fine structure spectroscopic studies at the Ni K-edge have been performed for the Ni-Zn alloy coating layer on steel. The Ni-Zn interatomic distances and Debye-Waller factors were determined by fitting the experimental data with the theoretical spectra in the temperature range of 80 to 300K. The average Ni-Zn interatomic distance was found to be $2.557{\AA}$ and the variation of the Ni-Zn interatomic distance with temperature in this range was insignificant. From the comparison of the Ni-Zn interatomic distance with the nearest neighbor distance of pure Zn lattice it has been suggested that there is an apparent contraction around Ni atom.

  • PDF

Low Temperature Optical Properties of NiO coated ZnO Nanorods (NiO 코팅 두께에 따른 ZnO 나노막대의 저온분광특성)

  • Shin, Y.H.;Park, Y.H.;Kim, Yong-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.286-290
    • /
    • 2007
  • We fabricated NiO coated ZnO nanorods using ZnO nanorods grown on a Si substrate. After thermal hydrogenation process of these NiO-ZnO core-shell nanorods, we confirm that Ni nanodots were built up on the surface of ZnO nanorods. Photoluminescence (PL) measurements at T=5 K were made to understand the optical properties of these various nanorods. As samples sequencially transformed into $ZnO{\rightarrow}NiO-ZnO{\rightarrow}Ni$ nanodot-ZnO, PL transition energies and intensities are varied as well. In comparison to pure ZnO nanorod, the acceptor bound exciton ($A^0X$) became the minor peak for NiO-ZnO nanorods. On the other hand, for Ni nanodot-ZnO sample, ($A^0X$) transition peak intensity became the most dominant peak. This is due to the fact that during thermal hydrogenation process, appreciable amounts of Ni and hydrogen ions defused into ZnO nanorod which played as accepters.

The Effect of Composition on the Properties of NiCuZn ferrites (NiCuZn ferrite의 특성에 미치는 조성의 영향)

  • 남중희;정현학;신재영;오재희
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.3
    • /
    • pp.191-196
    • /
    • 1995
  • NiCuZn ferrites were prepared by a solid-state reaction and sintered at $900^{\circ}C$ for 5 hours. Its properties were investigated by controlling the ferrite composition and processing. NiCuZn ferrite with a composition of ${(Ni_{0.2}Cu_{0.2}Zn_{0.6}O)}_{1.02}{(Fe_{2}O_{3})}_{0.98}$ was found to have the maximum initial permeability as a result of the variation of Cu content and the (Ni+Cu)/Zn ratio. Curie temperature($T_{c}$) of NiCuZn ferrite was decreased with the larger Cu content and increased with the larger Ni content. NiCuZn ferrites of ${(Ni_{0.2}Cu_{0.2}Zn_{0.6}O)}_{1-w}{(Fe_{2}O_{3})}_{1+w}$ composition milled for 20~80 hours had the maximum initial permeability at w=-0.015 and Curie temperature ($T_{c}$) was decreased with the increasing of $Fe_{2}O_{3}$ deficiency(w).

  • PDF

A Study on the Properties of EMI filter for the Ni/Zn ratio of Ni-Zn Ferrite (Ni-Zn ferrite의 Ni/Zn비 변화에 따른 EMI 비드 필터 특성 연구)

  • 이재영;김왕섭;손용배;김경용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.6
    • /
    • pp.848-853
    • /
    • 1993
  • The properties of ferrite bead, a low-pass filter, are determined by the frequency dispersion of the complex permeability. In this study, frequency dispersion of complex permeability of the Ni-Zn ferrites with different Ni/Zn ratio were investigated. Relationship between the behavior of filter and dispersion of complex permeability of a ferrite was studied. As a result, it was concluded that the compositions for Ni/Zn ratio of $0.41{\sim}0.47$, having high initial permeability and good sensitivity, were favorable as a ferrite bead filter.

  • PDF

Interfacial Reaction of Galvanized Steel in Ni Added Zn-0.18Al Bath (Zn-0.18Al 도금욕에서 Ni첨가에 따른 아연 도금강의 계면반응)

  • 이경구;기회봉;이도재
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.547-554
    • /
    • 1999
  • The interfacial reaction, spangle and coating thickness of galvanized steel in Ni added Zn-0.18Al bath have been investigated. The size of spangle and thickness of reaction layer were observed under an optical microscope, SEM and EDS. Analysing the experimental results concerning spangle size of galvanized steel it was found that Ni addition in Zn-0.18Al bath tended to be minimized spangle size. For Zn-0.18Al bath, addition of 0.1Ni suppressed the formation of Fe-Zn intermetallic compounds but increased with Ni content above 0.1%. The coating thickness of galvanized steel was reduced with Ni addition in Zn-0.18Al bath, especially in Zn-0.18Al-0.05Ni bath. Addition of Al in Ni containing bath resulted in forming the Al-Ni intermetallic compounds such as $Al_3$Ni$_2$ and $Al_2$Ni which consist most of top precipitates.

  • PDF

The Variation of Permeability and$Q_{max}$ Frequency with Processing Parameters in NiCuZn Ferrites (제조 공정 Parameter에 따른 NiCuZn Ferrite의 투자율과 $Q_{max}$ 주파수 변화)

  • 신재영;박지호;박진채;한종수;송병무
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.19-24
    • /
    • 1997
  • Composition and process conditions for low temperature sintered NiCuZn ferrites were investigated, so as to fabricate multilayered chip inductor. The$Fe_2O_3$ deficiency for low temperature sintering was decreased with NiO contents of NiCuZn ferrites. The permeability of NiCuZn ferrites can be controlled in the range of 12~562 with the variation of NiO and $Co_3O_4$ contents. The $Q_{max} $ frequency of NiCuZn ferrites was decreased from 50 MHz to 3 MHz linearly with permeability increase from 60 to 560. The relation between the $Q_{max}$ frequency(Y) and permeability(X) of NiCuZn ferrites was expressed with the following empirical equation, logY=4.2-1.4logX.

  • PDF

Response Characteristics of Thick Film Sensors Using Nano ZnO:Ni for Hydrocarbon Gas (나노 ZnO:Ni를 이용한 후막 가스센서의 탄화수소계 가스에 대한 감응특성)

  • Yoon, So-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • The effects of a Ni coating on the sensing properties of nano ZnO:Ni based gas sensors were studied for $CH_4$ and $CH_3CH_2CH_3$ gases. Nano ZnO sensing materials were prepared by the hydrothermal reaction method. The Ni coatings on the nano ZnO surface were deposited by the hydrolysis of zinc chloride with $NH_4OH$. The weight % of Ni coating on the ZnO surface ranged from 0 to 10 %. The nano ZnO:Ni gas sensors were fabricated by a screen printing method on alumina substrates. The structural and morphological properties of the nano ZnO : Ni sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns showed that nano ZnO : Ni powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The particle size of nano ZnO powders was about 250 nm. The sensitivity of nano ZnO:Ni based sensors for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas was measured at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity of the ZnO:Ni sensor to $CH_4$ gas and $CH_3CH_2CH_3$ gas was observed at Ni 4 wt%. The response and recovery times of 4 wt% Ni coated ZnO:Ni gas sensors were 14 s and 15 s, respectively.

A Study on the Characteristics of Salt Spray Test of Roll Formed and Zn-Ni Electrodeposited Steel Bolts (전조 후 Zn-Ni 전기도금한 강 볼트의 염수분무 특성에 관한 연구)

  • Hamrakulov, B.;Son, Y.H.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.330-335
    • /
    • 2012
  • Roll formed steel bolts are electrodeposited with Zn-Ni to protect themselves from corrosion. However, white storage stain or white rust(corrosion) is found on Zn-Ni electrodeposited surface of steel bolts when they are exposed to moisture. In this paper a new process is introduced to protect Zn-Ni electrodeposited steel bolt from white storage stain or white rust for a long time under the salt spray test and high humidity test conditions. The better corrosion resistance could be gotten by the additional process of Ni-P electroless deposition and heat treatment to conventional manufacturing method of Zn-Ni coated steel bolt. The corrosion resistance of Zn-Al powder slurry coated steel bolt showed better than that of Zn-Ni electrodeposited one.

Microstructure and Magnetic Property of Nanostructured NiZn Ferrite Powder

  • Nam, Joong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1119-1123
    • /
    • 2002
  • Nanostructured spinel NiZn ferrites were prepared by the sol-gel method from metal nitrate raw materials. Analyses by X-ray diffraction and scanning electron microscopy showed the average particle size of NiZn ferrite was under 50 nm. The single phase of NiZn ferrites was obtained by firing at 250${\circ}C$, resulting in nanoparticles exhibiting normal ferrimagnetic behavior. The nanostructured $Ni_{1-X}Zn_XFe_2O_4$ (x=0.0∼1.0) were found to have the cubic spinel structure of which the lattice constants ${\alpha}_2$ increases linearly from 8.339 to 8.427 ${\AA}$ with increasing Zn content x, following Vegard's law, approximately. The saturation magnetization $M_s$ was 48 emu/g for x=0.4 and decreased to 8.0 emu/g for higher Zn contents suggesting the typical ferrimagnetism in mixed spinel ferrites. Pure NiZn ferrite phase substituted by Cu was observed before using the additive but hematite phase was partially appeared at $Ni_{0.2}Zn_{0.2}Cu_{0.6}Fe_2O_4$. On the other hand, the hematite phase in this NiZn Cu ferrite was disappeared after using the additive of acethyl aceton with small amount. The saturation magnetization Ms of $Ni_{0.2}Zn_{0.8-y}Cu_yFe_2O_4$(y=0.2∼0.6) as measured was about 51 emu/g at 77K and 19 emu/g at room temperature, respectively.

The Prodessing Control of NiCuZn Ferrite(II) - The Relationship between Initial Permeability and Bulk Density of NiCuZn Ferrite as Functions of Forming Pressure and Sintering Temperature. (NiCuZn Ferrite의 제조공정 제어(제2보) - 성형압력 및 소성온도 변화에 따른 초기투자율과 겉보기밀도에 관한 고찰)

  • 류병환;김선희;최경숙;고재천
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.6
    • /
    • pp.937-946
    • /
    • 1995
  • In this research, the processing control of NiCuZn Ferrite has been developed. The relationship between initial permeability and bulk density of NiCuZn Ferrite with processing factors was studied. NiCuZn Ferrite, which calcinated at $700^{\circ}C$ for 3 hours, was ball milled for about 60 hours to make a size of $0.5\mu\textrm{m}$ followed by granulation using spray dryer. The physical properties and the magnetic properties of NiCuZn Ferrite were investigated with the processing factor, such as (i) granule size and forming pressure, and (ii) sintering temperature. The green density of NiCuZn Ferrite was largely depended on the forming pressure rather than its granule size. The green density of NiCuZn Ferrite was increased from $2.484\;g/cm^{3}$ to $3.002\;g/cm^{3}$ with increase in forming pressure. The bulk density of NiCuZn Ferrite was increased from $3.470\;g/cm^{3}$ to $4.754\;g/cm^{3}$ linearly with increase in sintering temperature. The relationship between initial permeability and bulk density of NiCuZn Ferrite was expressed with the empirical equation,$\mu_{i}=a+b_{\rho}+c_{\rho}^2$ at forming pressure and sintering temperature.

  • PDF