• Title/Summary/Keyword: Zn-Mg-Al coating

Search Result 33, Processing Time 0.018 seconds

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

Determination of Hg22+ Ions Using a Modified Glassy Carbon Electrode with 2,2':6':2''-Terpyridine

  • Kong, Young-Tae;Bae, Yun-Jung;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.346-350
    • /
    • 2002
  • A glassy carbon electrode (GCE) modified with 2,2':6':2”-terpyridine (2,2':6':2”-TPR) using a spin coating method was applied for the highly selective and sensitive analysis of a trace amount of $Hg_2^{2+}$ ions. Various experimental parameters, which influenced the response of the 2,2':6':2”-TPR modified electrode to $Hg_2^{2+}$ ions, were optimized. The linear sweep and differential pulse voltammograms for the 2,2':6':2”-TPR modified electrode deposited with Hg show a well-defined anodic peak at +0.65 V (vs. Ag|AgCl). After a 25 min preconcentration time in an $Hg_2^{2+}$ ion solution (0.1 M acetate buffer, pH 5.0), differential pulse voltammetry(DPV) with 2,2':6':2”-TPR modified electrode shows a linear response between $1.0\;{\times}\;10^{-6}M\;and\;2.0\;{\times}\;10^{-7}M$. The least-square treatment of these data produce an equation of I[${\mu}A$] = 0.031 + 0.005C with r = 0.980(n = 5). The detection limit of this electrode with linear sweep voltammetry and differential pulse anodic voltammetry were $2.0\;{\times}\;10^{-6}M\;and\;8.0\;{\times}\;10^{-8}M$, respectively. The presence of Pb, Fe, Cd, Ti, Ni, Co, Mg, Al, Mn, and Zn did not interfere in the analysis of the $Hg_2^{2+}$ ion. The 2,2':6':2”-TPR modified GCE has been successfully applied in determination trace amounts of Hg in a human urine sample.

Replacements for Chromate Pigments in Anticorrosion Primers for Aluminum Alloys

  • Yin, Zhangzhang;Ooij, Wim van;Puomi, Paula
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.206-210
    • /
    • 2007
  • Aerospace aluminum alloys such as Al alloy 2024-T3 and 7075-T6 are subject to localized corrosion due the existence of intermetallics containing Cu, Mg or Zn. Chromate is currently widely used in the aerospace industry as the corrosion inhibitor for these alloys. However, chromate needs to be replaced due to its strong carcinogenicity. In this study, an extensive pigment screening has been performed to find replacements for chromates. Different categories of inhibitors were evaluated by immersion tests, DC polarization tests and other methods. Phosphates, zinc salts, cerium salts, vanadates and benzotriazole were found to be effective inhibitors for AA7075. Among those inhibitors, zinc phosphate was found to be the most effective in our novel, silane-based, one-step aqueous primer system. The performance of this primer is comparable to that of currently used chromate primers in accelerated corrosion tests, while it is completely chromate-free and its VOC is about 80% less than that of current primers. Studies by SEM/EDS showed that the unique structure of the superprimer accounts for the strong anti-corrosion performance of the zinc phosphate pigment. The self-assembled stratified double-layer structure of the superprimer is characterized by a less-penetrable hydrophobic layer at the top and a hydrophilic layer accommodating the inhibitors underneath. The top layer functions as the physical barrier against water ingress, while the lower layer functions as a reservoirfor the inhibitor, which is leached out only if the coating is damaged by a scratch or scribe. The presence of a silane in the primer further improves the adhesion and anti-corrosion performance of the primer.