• 제목/요약/키워드: Zn-Al-Mg alloy coated steel

검색결과 14건 처리시간 0.023초

New Corrosion-Resistant Zn-Al-Mg Alloy Hot-Dip Galvanized Steel Sheet

  • Kohei Tokuda;Yasuto Goto;Mamoru Saito;Hiroshi Takebayashi;Takeshi Konishi;Yuto Fukuda;Fumiaki Nakamura;Koji Kawanishi;Kohei Ueda;Hidetoshi Shindo
    • Corrosion Science and Technology
    • /
    • 제23권2호
    • /
    • pp.121-130
    • /
    • 2024
  • In recent years, Zn-Al-Mg alloy galvanized steel sheets have been widely used as coated steel sheets to support social capital in the infrastructure field. A feature of Zn-Al-Mg alloy-coated steel sheets is that they provide a better corrosion protection period than Zn-coated steel sheets. In this study, the corrosion resistance of a new Zn-Al-Mg alloy-coated steel sheet was investigated and compared to that of conventional commercially available coated steel sheets. The investigation confirmed that increasing the Mg concentration in the Zn-Al-Mg-coated steel sheet improved corrosion resistance, which was more than 10 times that of the galvanized steel sheet specified in JIS G 3302. The study findings also confirmed that the corrosion resistance reached more than twice that of the coated steel sheet specified in JIS G 3323. If such galvanized steel sheets are applied to social infrastructures that are exposed to severely corrosive environments, the service life of the infrastructure might be extended.

일상 생활용수 내 Zn-Al-Mg계 합금도금강재의 부식거동 (Corrosion Behavior of Zn-Al-Mg Alloy Coated Steel Exposed to Residential Water)

  • 이재원;김성진
    • Corrosion Science and Technology
    • /
    • 제22권5호
    • /
    • pp.387-392
    • /
    • 2023
  • The objective of this study was to evaluate corrosion resistance of Zn-Al-Mg alloy coated steel in residential water with trace quantities of Cl-. Comparative evaluations were performed using two commercial coated steel products, GI and Galvalume, as reference samples. Examination of corrosion morphology and measurement of weight loss revealed that the Zn-Al-Mg alloy coated steel exhibited higher corrosion resistance than reference samples. This finding suggests that the alloy coated steel possesses long-term corrosion resistance not only in highly Cl- concentrated environments such as seawater, but also in environments with extremely low levels of Cl- found in residential water. The primary factor contributing to the superior corrosion resistance of the Zn-Al-Mg alloy coated steel in residential water is the formation of an inhibiting corrosion product composed primarily of two phases: Zn5(OH)6(CO3)2 and Zn5(OH)8Cl2·H2O. The preferential dissolution of Mg from the corroded coating layer can increase alkalinity, which might enhance the thermodynamical stability of Zn5(OH)6(CO3)2.

플랜트팜용 3원계 (Zn-Al-Mg) 합금도금 강판의 국부손상에 따른 부식 메커니즘 (Corrosion Mechanism According to Localized Damage of Zn-Al-Mg Alloy Coated Steel Sheet Used in Plant Farm)

  • 박진성;이재원;김성진
    • Corrosion Science and Technology
    • /
    • 제22권2호
    • /
    • pp.123-130
    • /
    • 2023
  • This study aimed to evaluate corrosion resistance of steel coated with GI and Zn-Al-Mg alloy using cyclic corrosion test (CCT) with electrochemical polarization and impedance measurements. Results showed that the Zn-Al-Mg alloy coated steel had a much higher corrosion rate than GI coated steel in early stages of corrosion. With prolonged immersion, however, the corrosion rate of the Zn-Al-Mg alloy coated steel greatly decreased, mainly owing to a significant decrease in the cathodic reduction reaction and an increase in polarization resistance at the surface. This was closely associated with the formation of protective corrosion products including Zn5(OH)8Cl2·H2O and Zn6Al2(OH)16CO3. Moreover, when the steel substrate was locally exposed due to mechanical damage, the kinetics of anodic dissolution from the coating layer and the formation of protective corrosion products on the surface of the Zn-Al-Mg alloy coated steel became much faster compared to the case of GI coated steel. This could provide a longer-lasting corrosion inhibition function for Zn-Al-Mg alloy coated steel used in plant farms.

플럭스 염화물 조성이 Zn-Mg-Al 3원계 합금도금층의 미세조직 및 도금성에 미치는 영향 (Effect of Flux Chloride Composition on Microstructure and Coating Properties of Zn-Mg-Al Ternary Alloy Coated Steel Product)

  • 김기연;소성민;오민석
    • 한국재료학회지
    • /
    • 제31권12호
    • /
    • pp.704-709
    • /
    • 2021
  • In the flux used in the batch galvanizing process, the effect of the component ratio of NH4Cl to ZnCl2 on the microstructure, coating adhesion, and corrosion resistance of Zn-Mg-Al ternary alloy-coated steel is evaluated. Many defects such as cracks and bare spots are formed inside the Zn-Mg-Al coating layer during treatment with the flux composition generally used for Zn coating. Deterioration of the coating property is due to the formation of AlClx mixture generated by the reaction of Al element and chloride in the flux. The coatability of the Zn-Mg-Al alloy coating is improved by increasing the content of ZnCl2 in the flux to reduce the amount of chlorine reacting with Al while maintaining the flux effect and the coating adhesion is improved as the component ratio of NH4Cl to ZnCl2 decreases. Zn-Mg-Al alloy-coated steel products treated with the optimized flux composition of NH4Cl·3ZnCl2 show superior corrosion resistance compared to Zn-coated steel products, even with a coating weight of 60 %.

Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석 (Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets)

  • 이재원;김성진
    • Corrosion Science and Technology
    • /
    • 제21권3호
    • /
    • pp.221-229
    • /
    • 2022
  • To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

Hot-dipped Al-Mg-Si Coating Steel - Its Structure, Electrochemical and Mechanical Properties -

  • Tsuru, Tooru
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.233-238
    • /
    • 2010
  • Hot-dipped Al-Mg-Si coatings to alternate Zn and Zn alloy coatings for steel were examined on metallographic structure, corrosion resistance, sacrificial ability, formation and growth of inter-metallic compounds, and mechanical properties. Near the eutectic composition of quasi-binary system of Al-$Mg_2Si$, very fine eutectic structure of ${\alpha}$-Al and $Mg_2Si$ was obtained and it showed excellent corrosion resistivity and sacrificial ability for a steel in sodium chloride solutions. Formation and growth of Al-Fe inter-metallic compounds at the interface of substrate steel and coated layer was suppressed by addition of Si. The inter-metallic compounds layer was usually brittle, however, the coating layer did not peel off as long as the thickness of the inter-metallic compounds layer was small enough. During sacrificial protection of a steel, amount of hydrogen into the steel was more than ten times smaller than that of Zn coated steel, suggesting to prevent hydrogen embrittlement. Al-Mg-Si coating is expected to apply for several kinds of high strength steels.

Zn-Al-Mg 합금도금강판의 헤어라인 처리가 표면흑색화 및 열확산도에 미치는 영향 (Effects of hairline treatment on surface blackening and thermal diffusion of Zn-Al-Mg alloy-coated steel sheet)

  • 박진성;윤덕빈;김상헌;김태엽;김성진
    • 한국표면공학회지
    • /
    • 제56권1호
    • /
    • pp.69-76
    • /
    • 2023
  • The effects of hairline treatment on surface blackening and thermal diffusion behaviors of Zn-Al-Mg alloy coated steel sheet were evaluated by the three-dimensional surface profiler and laser-flash technique. The metallographic observation of coating damages by hairline treatments showed that several cracks were initiated and propagated along the interface between primary Zn/eutectic phases. As the hairline processing became more severe, the crack occurrence frequency in eutectic phase of coating layer and the surface roughness increased, which had a proportional relationship with the level of blackening on the coating surface. In addition, the higher interfacial areas of the blackened coating surface, caused by the hairline process, led to an increase in thermal diffusivity and conductivity of the coated steel sheet. On the other hand, when the coating damage by hairline treatment was excessive and the steel substrate was exposed, there was little difference between the thermal diffusivity/conductivity of the untreated sample though the blackening degree was higher than that of untreated sample. This work suggests that the increase in the surface areas of the coating layer without exposure to steel substrate through hairline treatment can be one of the effective technical strategies for the development of Zn-Al-Mg alloy coated steel sheets with higher blackening level and thermal diffusivity.

Performance of Hot-dip Zn-6%Al-3%Mg Alloy Coated Steel Sheet as Automotive Body Material

  • Shimizu, Takeshi;Asada, Hiroshi;Morikawa, Shigeru
    • Corrosion Science and Technology
    • /
    • 제9권2호
    • /
    • pp.74-80
    • /
    • 2010
  • For the purpose of applying a hot-dip Zn-6mass%Al-3mass%Mg alloy coated steel sheet (ZAM) to automotive body materials, a laboratory study of the general properties required for inner and outer panels of automotive bodies was performed. Even with only light coating weight, ZAM showed an excellent corrosion resistance in terms of both cosmetic and perforation corrosion compared to the currently used materials for automotive bodies, GI70 and GA45. In our study, it was confirmed that ZAM exhibits as good as or better properties than GI70 in terms of spot weldability and press formability. Furthermore, since the same corrosion resistance can be achieved with less coating weight by applying ZAM, laser weldability is better than GI and GA.

Zn-Mg-Al 합금도금강판의 Zn-MgZn2 공정조직의 부식거동 (Corrosion behavior of Zn-MgZn2 Eutectic Structure in Zn-Mg-Al alloy coated steel)

  • 이재원;손홍균;민재규;유영란;곽영진;김태엽
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.280-280
    • /
    • 2012
  • Mg의 첨가한 Zn-Mg-Al 합금도금강판에 형성된 $Zn-MgZn_2$ 공정조직의 부식거동을 이해하고자 진공 고주파 용해로 $MgZn_2$ 제작한 후 Zn와 galvanic coupling하여 $MgZn_2$합금과 Zn간의 galvanic corrosion 거동을 알아보았다. $MgZn_2-Zn$ galvanic coupling의 SVET 결과에서 $MgZn_2$가 anode, Zn가 cathode가 됨을 확인되었다. $MgZn_2$의 Zn와의 galvanic corrosion 평가에서 galvanic current는 Zn 보다 낮은 potential에서 anodic current density를 나타내었으며, galvanic potential은 $MgZn_2$전위로부터 두 합금의 혼합전위를 향해 증가함을 알 수 있었다. Zn-Mg-Al 합금도금강판의 염수분무 평가에서도 초기 $Zn-MgZn_2$ 공정조직에서 $MgZn_2$가 용출되는 것이 관찰되었다.

  • PDF

Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구 (Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy)

  • 서위걸;;이희남;양동주;박순균;최시훈
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.