• Title/Summary/Keyword: Zn precursor

Search Result 185, Processing Time 0.027 seconds

Structural and electrical Properties of FeO:ZnO Films (FeO:ZnO막의 구조적 및 전기적 특성)

  • Choi, Mu-Hee;Ahan, Hyun-Jin;Ma, Tae-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.222-225
    • /
    • 2004
  • Iron-doped ZnO films or zinc-doped $Fe_2O_3$ films were prepared by ultrasonic spray pyrolysis. Iron cholide and zinc acetate were used as a precursor for Fe and Zn, respectively. XRD and SEM were carried out to study the crystallinity and morphology of the films. Atomic composition of the films were identified by EPMA ansd XPS. Resistivity variation with the composition rate was studied.

  • PDF

Preparation and Photoluminescence Properties of the ZnGa₂O₄: Mn Phosphor by Polymerized Complex Precursor

  • 조두환;정하균;석상일;박도순
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.608-612
    • /
    • 1997
  • The preparation and photoluminescence properties of $ZnGa_2O_4$ : Mn phosphor are presented. Under 254 nm excitation $Zn_1-_xMn_xGa_2O_4$ exhibits the green emission band at 506 nm wavelength and maximum intensity where x=0.005. The manganese activated $ZnGa_2O_4$ phosphor prepared by the polymerized complex method shows a remarkable increase in the emission intensity and is smaller particle size than that prepared by conventional method. Also, electron paramagnetic resonance study on $ZnGa_2O_4$ : Mn powders indicates that the increase in emission intensity after firing treatment in mild hydrogen reducing atmosphere is due to the conversion of the higher valent manganese to $Mn^{2+}$.

Magnetic Properties of Hard/Soft Nanocomposite Ferrite Synthesized by Self-Combustion Precursors (자전 연소 전구체로 합성한 나노 크기 경/연 복합페라이트의 자기 특성)

  • Oh, Young Woo;Ahn, Jong Gyeon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.45-50
    • /
    • 2015
  • The goal of this research is the create novel magnets with no rare-earth contents, with larger energy product by comparison with currently used ferrites. For this purpose we developed nano-sized hard-type/soft-type composite ferrite in which high remanent magnetization (Mr) and high coercivity (Hc). Nano-sized Ba-ferrite, Ni-Zn ferrite and $BaFe_{12}O_{19}/Ni_{0.5}Zn_{0.5}Fe_2O_4$ composite ferrites were prepared by sol-gel combustion method by use of glicine-nitrate and citric acid. Nanocomposite ferrites were calcined at temperature range $700-900^{\circ}C$ for 1h. According to the X-ray diffraction patterns and FT-IR spectra, single phase of NiZn-ferrite and Ba-ferrite were detected and hard/soft nanocomposite ferrite was indicated to the coexistence of the magnetoplumbite-structural $BaFe_{12}O_{19}$ and spinel-structural $Ni_{0.5}Zn_{0.5}Fe_2O_4$ that agreed with the standard JCPDS 10-0325 data. The particle size of nanocomposite turn out to be less than 120 nm. The nanocomposite ferrite shows a single-phase magnetization behavior, implying that the hard magnetic phase and soft magnetic phase were well exchange-coupled. The specific saturation magnetization ($M_s$) of the nanocomposite ferrite is located between hard ($BaFe_{12}O_{19}$) and soft ferrite($Ni_{0.5}Zn_{0.5}Fe_2O_4$). The remanence (Mr) of nanocomposite ferrite is much higher than that of the individual $BaFe_{12}O_{19}$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4$ ferrite, and $(BH)_{max}$ is increased slightly.

Synthesis of ZnS : Cu nano-crystals and structural and optical properties (ZnS : Cu nano 업자의 합성 및 구조적.광학적 특성)

  • 이종원;이상욱;조성룡;김선태;박인용;최용대
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.138-143
    • /
    • 2002
  • In this study, ZnS: Cu nano-crystals are synthesized by solution synthesis technique (SST). The structural properties such as crystal structure and particle morphology, and the optical properties such as light absorption/transmittance, energy bandgap, and photoluminescence (PL) excitation/emission are investigated. In an attempt to realize the Cu-doping easiness, the synthesis temperature (~$80^{\circ}C$) is applied to the synthesis bath, and the thiourea is used as sulfur precursor, unlike other general chemical synthesis route. Both undoped ZnS and ZnS : Cu nano-crystals have the cubic crystal structure and have the spherical particle shape. The position of light absorption edge is ~305 nm, indicating the occurrence of quantum size effect. The PL emission intensity and line-width are maximum and minimum, respectively, for Cu-doping concentration 0.03M. In particular, the dependence of PL intensity and line-width on the Cu-doping concentration for ZnS : Cu nano-crystals synthesized by SST is reported for the first time in this study. Experimental results of the absorption edge and the PL excitation show that the main emission peak of ZnS : Cu nano-crystals (~510 nm) in this study is due to the radiative recombination center in the energy bandgap induced by Cu dopant.

Modified Shrinking Core Model for Atomic Layer Deposition of TiO2 on Porous Alumina with Ultrahigh Aspect Ratio

  • Park, Inhye;Leem, Jina;Lee, Hoo-Yong;Min, Yo-Sep
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.519-523
    • /
    • 2013
  • When atomic layer deposition (ALD) is performed on a porous material by using an organometallic precursor, minimum exposure time of the precursor for complete coverage becomes much longer since the ALD is limited by Knudsen diffusion in the pores. In the previous report by Min et al. (Ref. 23), shrinking core model (SCM) was proposed to predict the minimum exposure time of diethylzinc for ZnO ALD on a porous cylindrical alumina monolith. According to the SCM, the minimum exposure time of the precursor is influenced by volumetric density of adsorption sites, effective diffusion coefficient, precursor concentration in gas phase and size of the porous monolith. Here we modify the SCM in order to consider undesirable adsorption of byproduct molecules. $TiO_2$ ALD was performed on the cylindrical alumina monolith by using titanium tetrachloride ($TiCl_4$) and water. We observed that the byproduct (i.e., HCl) of $TiO_2$ ALD can chemically adsorb on adsorption sites, unlike the behavior of the byproduct (i.e., ethane) of ZnO ALD. Consequently, the minimum exposure time of $TiCl_4$ (~16 min) was significantly much shorter than that (~71 min) of DEZ. The predicted minimum exposure time by the modified SCM well agrees with the observed time. In addition, the modified SCM gives an effective diffusion coefficient of $TiCl_4$ of ${\sim}1.78{\times}10^{-2}\;cm^2/s$ in the porous alumina monolith.

Effects of Growth Conditions on Structural and Optical Properties of ZnS Nanoclusters (용액성장법의 성장조건이 ZnS 나노클러스터의 구조적, 광학적 특성에 미치는 영향)

  • 이상욱;이종원;조성룡;김선태;박인용;최용대
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.558-561
    • /
    • 2001
  • In this study, the ZnS nanosized thin films were grown by the solution growth technique (SGT), and their structural and optical properties were examined. X-ray diffraction patterns showed that the ZnS thin film obtained in this study had the cubic structure ($\beta$-ZnS). With decreasing growth temperature and decreasing concentration of precursor solution, the surface morphology of film was found to be improved. In particular, this is the first time that the surface morphology dependence of ZnS film grown by SGT on the ammonia concentration is reported. The energy band gaps of samples were shown to vary from 3.69 eV to 3.91 eV, demonstrating that the quantum size effect of SGT grown ZnS is remarkable. Photoluminescence (PL) peaks were observed at the positions corresponding to the lower energy than that to energy band gap, illustrating that the surface states were induced by the ultra-fineness of grains in ZnS films.

  • PDF

Effects of Gas Mixing Ratio on the Properties of Thin Films in the ZnO Synthesis by MOCVD (MOCVD에 의한 ZnO 합성에서 기체혼합비가 박막의 물성에 미치는 영향)

  • SeoMoon, Kyu;Lee, JongIn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.109-113
    • /
    • 2013
  • ZnO thin films were synthesized on Si substrates by MOCVD using diethyl zinc as a precursor. Effects of $O_2$/DEZ gas mixing ratio on the growth rate, surface morphology, preferred orientation, and electrical properties of the ZnO thin films were investigated with SEM, XRD, and Hall measurement. The surface reflectance variations of ZnO thin films were analyzed using laser-photometer apparatus. As the $O_2$/DEZ mixing ratio increased, growth rate and $I_{(002)}/I_{(101)}$ in XRD of ZnO thin films decreased, and the crystal structure was changed from columnar to planar structure. All ZnO films deposited at various CVD conditions exhibited c-axis (002) plane preferred orientation. The electrical properties of ZnO thin films mainly depended on the carrier mobility.

Codoped ZnO films by a co-spray deposition technique for photovoltaic applications

  • Zhou, Bin;Han, Xiaofei;Tao, Meng
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.97-104
    • /
    • 2014
  • A co-spray deposition technique has been developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e., the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with F and Al have been successfully synthesized, in which F is incompatible with Al. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, $NH_4F$. The second solution contained the Zn and Al precursors, $Zn(O_2CCH_3)_2$ and $AlCl_3$. The deposition was carried out at $500^{\circ}C$ on soda-lime glass in air. A minimum sheet resistance, $55.4{\Omega}/{\square}$, was obtained for Al and F codoped ZnO films after vacuum annealing at $400^{\circ}C$, which was lower than singly-doped ZnO with either Al or F. The transmittance for the codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties for photovoltaic applications.

The Characteristics of ZnO/SnO2 Sensing Materials by Ultrasonic and Hydrothermal Treatments to Volatile Organic Compounds (초음파 및 수열처리법에 의한 ZnO/SnO2 센서의 저농도 VOC 감응특성)

  • Yu, Joon-Boo;Do, Seung-Hoon;Byun, Hyung-Gi;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.446-450
    • /
    • 2012
  • The important factors in sensors are sensitivity, selectivity, and response time. Oxide semiconductors are high sensitivity, fast response and the advantage of miniaturization. Zn-doped $SnO_2$ materials have been synthesized in order to improve the selectivity of the sensor. ZnO/$SnO_2$ crystals were prepared by a simple hydrothermal process and ultrasound pretreated hydrothermal process. ZnO/$SnO_2$ urchins were fabricated in the precursor solution with [$Zn^{2+}$]:[$Sn^{4+}$] ratio of 1:5 and rod structures were fabricated ratio of 1:1 and 1:3. Surface area ratio was increased by increasing the ratio of [$Sn^{4+}$]. The sensitivity of sensors were highest at the [$Zn^{2+}$]:[$Sn^{4+}$] ratio of 1:5 in ethanol, acetaldehyde, toluene, and nitric oxide.

ZnO/SiO2 Prepared by Atomic Layer Deposition as Adsorbents of Organic Dye in Aqueous Solution and Its Photocatalytic Regeneration

  • Jeong, Bora;Jeong, Myung-Geun;Park, Eun Ji;Seo, Hyun Ook;Kim, Dae Han;Yoon, Hye Soo;Cho, Youn Kyoung;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.167.2-167.2
    • /
    • 2014
  • In this work, ZnO shell on mesoporous $SiO_2$ ($ZnO/SiO_2$) was prepared by atomic layer deposition (ALD). Diethylzinc (DEZ) and $H_2O$ were used as precursor of ZnO shell. $ZnO/SiO_2$ sample was characterized by X-ray diffraction (XRD), N2 sorption isotherms, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FT-IR). $ZnO/SiO_2$ showed higher adsorption capacity of MB than that of bare mesoporous $SiO_2$ and the adsorption capacities of $ZnO/SiO_2$ could be regenerated by UV exposure through the photocatalytic degradation of the adsorbed MB. This system could be used for removing organic dye from water by adsorption and reused after saturation of adsorption due to its photocatalytic regeneration.

  • PDF