• 제목/요약/키워드: Zn oxide nanofibers

검색결과 13건 처리시간 0.017초

Electrospun Nanocomposite Fiber Mats of Zinc-Oxide Loaded Polyacrylonitrile

  • Nataraj, S.K.;Kim, B.H.;Yun, J.H.;Lee, D.H.;Aminabhavi, T.M.;Yang, K.S.
    • Carbon letters
    • /
    • 제9권2호
    • /
    • pp.108-114
    • /
    • 2008
  • We have demonstrated the feasibility of using electrospinning method to fabricate long and continuous composite nanofiber sheets of polyacrylonitrile (PAN) incorporated with zinc oxide (ZnO). Such PAN/ZnO composite nanofiber sheets represent an important step toward utilizing carbon nanofibers (CNFs) as materials to achieve remarkably enhanced physico-chemical properties. In an attempt to derive these advantages, we have used a variety of techniques such as field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution X-ray diffraction (HR-XRD) to obtain quantitative data on the materials. The CNFs produced are in the diameter range of 100 to 350 nm after carbonization at $1000^{\circ}C$. Electrical conductivity of the random CNFs was increased by increasing the concentration of ZnO. A dramatic improvement in porosity and specific surface area of the CNFs was a clear evidence of the novelty of the method used. This study indicated that the optimal ZnO concentration of 3 wt% is enough to produce CNFs having enhanced electrical and physico-chemical properties.

전기방사법을 이용해 제조된 NiZn ferrite 나노 섬유의 결정화 (Crystallization of the NiZn ferrite nanofibers fabricated by electrospinning method)

  • 나경한;유선호;송태협;김성욱;최원열
    • 한국결정성장학회지
    • /
    • 제30권6호
    • /
    • pp.226-231
    • /
    • 2020
  • 전기방사 공정을 이용하여 니켈, 아연, 철 전구체를 포함하는 Polyvinyl pyrrolidone 나노 섬유를 제조하였다. 이를 전자기파 차폐에 사용할 수 있는 Ni0.5Zn0.5Fe2O4 산화물 나노 섬유로 전환하기 위하여 열처리 조건을 제어하였다. 비정질 카본 블랙이나 의도치 않은 제2상 등을 배제하고 1차원 미세구조를 유지하면서 산화물 나노 섬유로 만들기 위하여 열처리 중 실시간으로 샘플을 채취해 공정 중 샘플 변화를 추적하였다. X-ray diffraction(XRD) 분석 결과 결정화된 Ni0.5Zn0.5Fe2O4의 회절 패턴은 300℃부터 나타나기 시작하였으나, energy dispersive spectroscopy(EDS) 결과 상 카본 블랙이 대부분 사라지기 위해서는 500℃ 이상의 열처리를 필요로 하였다. 650℃ 이상의 온도부터는 본격적으로 결정 핵 성장이 진행되어 섬유 표면 상태가 매끄럽지 않아지므로, 적용 분야에 따라 선택적으로 열처리 조건을 결정해야 함이 확인되었다.

Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete

  • Arbabi, Amir;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.97-104
    • /
    • 2020
  • Due to the superior properties of nanoparticles, using them has been increased in concrete production technology. In this study, the effect of zinc oxide (ZnO) nanoparticles on the mechanical and smart properties of concrete was studied. At the first, the ZnO nanoparticles are dispersed in water using shaker, magnetic stirrer and ultrasonic devices. The nanoparticles with 3.5, 0.25, 0.75, and 1.0 volume percent are added to the concrete mixture and replaced by the appropriate amount of cement to compare with the control sample without any additives. In order to study the mechanical and smart properties of the concrete, the cubic samples for determining the compressive strength and cylindrical samples for determining tensile strength with different amounts of ZnO nanoparticles are produced and tested. The most important finding of this paper is about the smartness of the concrete due to the piezoelectric properties of the ZnO nanoparticles. In other words, the concrete in this study can produce the voltage when subjected to mechanical load and vice versa it can induce the mechanical displacement when subjected to external voltage. The experimental results show that the best volume percent for ZnO nanoparticles in 28-day samples is 0.5%. In other words, adding 0.5% ZnO nanoparticles to the concrete instead of cement leads to increases of 18.70% and 3.77% in the compressive and tensile strengths, respectively. In addition, it shows the best direct and reverse piezoelectric properties. It is also worth to mention that adding 3.5% zinc oxide nanoparticles, the setting of cement is stopped in the concrete mixture.