• Title/Summary/Keyword: Zn doping

Search Result 366, Processing Time 0.029 seconds

Characteristics of Cl-doped ZnSe epilayers grown by hot wall epitaxy (HWE 방법으로 성장한 ZnSe:Cl 박막의 특성)

  • 이경준;전경남;강한솔;정원기;두하영;이춘호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.271-275
    • /
    • 1997
  • We have successfully grown Cl-doped ZnSe epitaxial layers on GaAs(100) sub-strates by HWE using $ZnCl_2$ as a doping source. The Cl-doped ZnSe layers showed mirrorlike morphology and good crystallinity. It has been found that the layer exhibited an n-type conduction with low resistivity. The carrier concentration is, obtained about $10^{16}\textrm {cm}^{-3}$, where a resistivity reached 10 $\Omega \textrm {cm}$. The layer with an appropriate doping level exhibited blue photoluminescence at room temperature. The strong blue PL was obtained at the hall mobility of $100^2\textrm {cm}$/Vㆍsec.

  • PDF

Properties of N doped ZnO grown by DBD-PLD (DBD-PLD 방법을 이용하여 N 도핑된 ZnO 박막의 특성 조사)

  • Leem, Jae-Hyeon;Kang, Min-Seok;Song, Wong-Won;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.15-16
    • /
    • 2008
  • We have grown N-doped ZnO thin films on sapphire substrate by employing dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound exciton peak ($A^0X$) that indicated the successful p-type doping of ZnO with N.

  • PDF

Doping and Annealing Effect on Luminescent Characteristics of $_2$ Phosphor Thin Films (ZnGa$_2$O$_4$형광박막의 발광특성에 미치는 도핑 및 어닐리의 효과)

  • 정영호;정승묵;김석범;김영진
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.619-625
    • /
    • 1998
  • Mn doped {{{{ {Zn {Ga }_{2 }O }_{4 } }} thin film phosphors were prepared on Si(100) wafers and ITO coated glass substrates by rf magnetron sputtering technique and the effects of the substrates dopant and the sputtering paramet-ers were analyzed, Changes of the oreintation were observed after annealine tratment. The grain size of {{{{ {Zn {Ga }_{2 }O }_{4 } }} : Mn thin film deposited on Si wafer was smaller than that on ITO/glass substrate which resulted in higher PL intensity. The PL spectra of Mn doped {{{{ {Zn {Ga }_{2 }O }_{4 } }} thin films showed sharp green luminescence spec-trum. According to CL spectrum it could be concluded that Mn ions acted as an actuator for green emission by substituting Zn atom sites.

  • PDF

Sol-gel Spin-coating of ZnO Co-doped with (F, Ga) as A Transparent Conducting Thin Film ((F, Ga) 코도핑된 ZnO 투명 전도 박막의 솔-젤 제조와 특성)

  • Nam, Gil Mo;Kwon, Myoung Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.91-95
    • /
    • 2014
  • (F,Ga) co-doped ZnO thin film on glass substrate was fabricated via a simple non-alkoxide sol-gel spin-coating. Contrary to the F single doped ZnO thin film, the (F,Ga) co-doped thin film showed a significant reduce in electrical resistivity after a second post-heat-treatment in reducing environment. The resulting decrease in electrical resistivity with Ga co-doping is considered to be resulted from the increases both carrier density and mobility. The optical transmittance of the (F,Ga) co-doped thin film in the visible range showed higher transmittance with Ga co-doping compared with F single doped ZnO thin film.

OMVPE and Plasma-Assisted Doping of ZnSe with Dimethlzinc:triethylamine Adduct Source

  • Huh, Jeung-Soo;Lim, Jeong-Ok
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.55-60
    • /
    • 1996
  • The growth and microwave plasma assisted nitrogen doping of ZnSe by low pressure organometallic vapor phase epitaxy(OMVPE) has been investigated in a vertical downflow reactor equipped with a laser interferometer for in-situ growth rate measurements. Particular emphasis is placed on understanding growth characteristics of $H_{2}Se$ and the new adduct source dimethylzinc:triethyllamine($DMZn:NEt_{3}$) as compared with those obtained with $H_{2}Se$ and DMZn. At lower temperatures ($<300^{\circ}C$) and pressures(<30Torr), growth rates are higher with the adduct source and the surface morphology is improved relative to films synthesized with DMZn. Hall measurements and photoluminescence spectra of the grown films demonstrate that DMZn and $DMZn:NEt_{3}$ produce material with comparable electronic and optical properties. Microwave plasma decomposition of ammonia is investigated as a possible approach to increasing nitrogen incorporation in ZnSe and photoluminescence spectra are compared to those realized with conventional ammonia doping.

  • PDF

Deposition of ZnO Thin Films by RF Magnetron Sputtering and Cu-doping Effects (RF 마그네트론 스퍼터링에 의한 ZnO박막의 증착 및 구리 도우핑 효과)

  • Lee, Jin-Bok;Lee, Hye-Jeong;Seo, Su-Hyeong;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.654-664
    • /
    • 2000
  • Thin films of ZnO are deposited by using an RF magnetron sputtering with varying the substrate temperature(RT~39$0^{\circ}C$) and RF power(50~250W). Cu-doped ZnO(denoted by ZnO:Cu) films have also been prepared by co-spputtering of a ZnO target on which some Cu-chips are attached. Different substrate materials, such as Si, $SiO_{2}/Si$, sapphire, DLC/Si, and poly-diamond/Si, are employed to compare the c-axial growth features of deposited ZnO films. Texture coefficient(TC) values for the (002)-preferential growth are estimated from the XRD spectra of deposited films. Optimal ranges of RF powers and substrate temperatures for obtaining high TC values are determined. Effects of Cu-doping conditions, such as relative Cu-chip sputtering areas, $O_{2}/(Ar+O_{2})$ mixing ratios, and reactor pressures, on TC values, electrical resistivities, and relative Cu-compositions of deposited ZnO:Cu films have been systematically investigated. XPS study shows that the relative densities of metallic $Cu(Cu^{0})$ atoms and $CuO(Cu^{2+})$-phases within deposited films may play an important role of determining their electrical resistivities. It should be noted from the experimental results that highly resistive(> $10^{10}{\Omega}cm$ ZnO films with high TC values(> 80%) can be achieved by Cu-doping. SAW devices with ZnO(or Zn):Cu)/IDT/$SiO_{2}$/Si configuration are also fabricated to estimate the effective electric-mechanical coupling coefficient($k_{eff}^{2}$) and the insertion loss. It is observed that the devices using the Cu-doped ZnO films have a higher $k_{eff}^{2}$ and a lower insertion loss, compared with those using the undoped films.

  • PDF

Doping a metal (Ag, Al, Mn, Ni and Zn) on TiO2 nanotubes and its effect on Rhodamine B photocatalytic oxidation

  • Gao, Xinghua;Zhou, Beihai;Yuan, Rongfang
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.329-335
    • /
    • 2015
  • The effects of ion-doping on $TiO_2$ nanotubes were investigated to obtain the optimal catalyst for the effective decomposition of Rhodamine B (RB) through UV photocatalytic oxidation process. Changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the BET surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on RB removal increased when $Ag^+$, $Al^{3+}$ and $Zn^{2+}$ were doped into the $TiO_2$ nanotubes, whereas such activities decreased as a result of $Mn^{2+}$ or $Ni^{2+}$ doping. In the presence of $Zn^{2+}$-doped $TiO_2$ nanotubes calcined at $550^{\circ}C$, the removal efficiency of RB within 50 min was 98.7%.

Sol-Gel법에 의해 제조된 ZnO 투명전도막의 특성

  • Ju, Jang-Hwan;Park, Byeong-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.69-69
    • /
    • 2009
  • Al이 doping된 ZnO 투명전도막을 fusion 1737 기판위에 Sol- Gel법으로 제조하였다. 제조된 Sol은 48시간 이상 숙성하여 안정화 시킨 다음, 박막을 제조하여 doping한 Al의 at%에 따른 박막의 전기, 광학적 특성을 조사하였다. XRD 측정 결과 순수한 ZnO Sol로 제조된 박막의 경우보다 0.75at%의 Al을 첨가하였을 때 가장 강한 peak intensity를 얻을 수 있었으며, 또한 0.75at% 첨가 시 순수한 ZnO 투명전도막보다 3~4order 정도 낮은 비저항을 나타내었다. 광투과율은 Al의 첨가량에 관계없이 90%를 넘는 높은 값을 나타내었다.

  • PDF

Electrical Chracteristics of $Al_2$O$_3$ doped ZnO (Al$_2$O$_3$가 첨가된 ZnO의 전기특성변화)

  • Park, U-Sung-;Park, Choon-Bae-
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.17-20
    • /
    • 1994
  • Electrical Chracteristics of ZnO doped with Al$_2$O$_3$were investigated using complexe impedence measurements. The electrical conductivity of ZnO samples increased whithin 0.5mol% of Al$_2$O$_3$ doping, but decreased abode 0.5mol%. The increase and decrease of electrical conductivity seem to be the effect of Al$_2$O$_3$ doner doping and increasement of the number of grain boundary ZnO, respectively.

Enhancement of Photo-reduction of Water by Exploiting Zn Doped Mesoporous $TiO_2$

  • Ali, Zahid;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.588-588
    • /
    • 2012
  • Zn-doped $TiO_2$ mesoporous microspheres with high photocatalytic activity were synthesized via combined sol-gel and solvothermal methods for photocatalytic water splitting. It is found that the photocatalytic water splitting and photocatalytic degradation activity can be enhanced by doping an appropriate amount of Zn. Our results reveal that Zn doping inhibits the recombination of photo-generated charge carriers of $TiO_2$ and improves the probability of photo-generated charge carrier separation and hence the photocatalytic activity of $TiO_2$.

  • PDF