• Title/Summary/Keyword: Zn buffer layer

Search Result 135, Processing Time 0.025 seconds

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • Lee, Eun-U;Park, Sun-Yong;Lee, Sang-Hwan;Kim, U-Nam;Jeong, U-Jin;Jeon, Chan-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

Implementation of High Carrier Mobility in Al-N Codoped p-Type ZnO Thin Films Fabricated by Direct Current Magnetron Sputtering with ZnO:Al2O3 Ceramic Target

  • Jin, Hujie;Xu, Bing;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.169-173
    • /
    • 2011
  • In this study, Al-N codoped p-type zinc oxide (ZnO) thin films were deposited on Si and homo-buffer layer templates in a mixture of $N_2$ and $O_2$ gas with ceramic ZnO:(2 wt% $Al_2O_3$) as a sputtering target using DC- magnetron sputtering. X-ray diffraction spectra of two-theta diffraction showed that all films have a predominant (002) peak of ZnO Wurtzite structure. As the $N_2$ fraction in the mixed $N_2$ and $O_2$ gases increased, field emission secondary electron microscopy revealed that the surface appearance of codoped films on Si varied from smooth to textured structure. The p-type ZnO thin films showed carrier concentration in the range of $1.5{\times}10^{15}-2.93{\times}10^{17}\;cm^{-3}$, resistivity in the range of 131.2-2.864 ${\Omega}cm$, and mobility in the range of $3.99-31.6\;cm^2V^{-1}s^{-1}$ respectively.

The Influence of Substrate Temperature on the Structural and Optical Properties of ZnS Thin Films (기판온도가 ZnS 박막의 구조 및 광학적 특성에 미치는 영향)

  • Hwang, Dong-Hyun;Ahn, Jung-Hoon;Son, Young-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.760-765
    • /
    • 2011
  • Znic sulfide (ZnS) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The substrate temperature varied from room temperature (RT) to $500^{\circ}C$. The structural and optical properties of ZnS films were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive analysis of X-ray (EDAX) and UV-visible transmission spectra. The XRD analyses reveal that ZnS films have cubic structures with (111) preferential orientation, whereas the diffraction patterns sharpen with the increase in substrate temperatures. The FESEM images indicate that ZnS films deposited at $400^{\circ}C$ have nano-sized grains with a grain size of ~ 67 nm. Then films exhibit relatively high transmittance of 80% in the visible region, with an energy band gap of 3.71 eV. One obvious result is that the energy band gap of the film increases with increasing the substrate temperatures.

The Influence of Al Underlayer on the Optical and Electrical Properties of GZO/Al Thin Films

  • Kim, Sun-Kyung;Kim, So-Young;Kim, Seung-Hong;Jeon, Jae-Hyun;Gong, Tae-Kyung;Kim, Daeil;Choi, Dong-Hyuk;Son, Dong-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.321-323
    • /
    • 2013
  • 100 nm thick Ga doped ZnO (GZO) thin films were deposited with DC and RF magnetron sputtering at room temperature on glass substrate and Al coated glass substrate, respectively. and the effect of the Al underlayer on the optical and electrical properties of the GZO films was investigated. As-deposited GZO single layer films had an optical transmittance of 80% in the visible wavelength region, and sheet resistance of 1,516 ${\Omega}/{\Box}$, while the optical and electrical properties of GZO/Al bi-layered films were influenced by the thickness of the Al buffer layer. GZO films with 2 nm thick Al film show a lower sheet resistance of 990 ${\Omega}/{\Box}$, and an optical transmittance of 78%. Based on the figure of merit (FOM), it can be concluded that the thin Al buffer layer effectively increases the performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.

Improvement of Hybrid EL Efficiency in Nanoparticle EL Devices by Insertion of the Layers of PVK and BaF2

  • Lee, Jun-Woo;Cho, Kyoung-Ah;Kim, Hyun-Suk;Park, Byoung-Jun;Kim, Sang-Sig;Kim, Sung-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.101-105
    • /
    • 2005
  • Electroluminescence(EL) and current-voltage(I-V) characteristics of hybrid EL devices containing Pr and Mn co-doped ZnS nanoparticles were investigated in this study. For the insertion of a hole transport layer of poly (N-vinyl carbazole)(PVK), the current level became lower due to the accumulation of electrons at the interface between PVK and nanoparticles. When both PVK and buffer layer $BaF_2$ were simultaneously introduced, the enhanced EL efficiency and improved I-V characteristics were obtained. This results from the additional increase of hole injection owing to the internal field induced by the significant accumulation of electrons at the interface. The presence of buffer layer $BaF_2$ together with PVK makes it possible the charge accumulation enough to induce the sufficient internal field for further hole injection.

Comparison of $Y_2O_3$ and ZnO Nanoparticles Introduced in YBCO Multilayered Films as Artificial Pinning Centers (YBCO 다층박막에 첨가된 $Y_2O_3$와 ZnO 나노입자의 자속꽂음 중심 특성 비교)

  • Wie, C.H.;Tran, D.H.;Putri, W.B.K.;Kang, B.;Kim, Y.J.;Oh, S.J.;Lee, N.H.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • v.13 no.2
    • /
    • pp.90-96
    • /
    • 2011
  • We investigated the properties of artificial pinning centers of YBCO multilayer films in which $Y_2O_3$ and ZnO nanoparticles are uniformly introduced by using the pulsed laser deposition (PLD) technique. $Y_2O_3$ and ZnO nanoparticles were deposited on top of YBCO buffer layer and the density of nanoparticles was controlled by varying the number of nanoparticle layers. YBCO superconducting layers with total thickness of 250 nm were deposited on top of $Y_2O_3$ and ZnO nanoparticles. Based on analyses of the surface morphology, the transition temperature $T_c$, and the critical current density $J_c$, we discussed the difference between the two kinds of nanoparticles as flux pinning centers.

Fabrication of Flexible CIGS thin film solar cells using STS430 substrate (STS430 기판을 이용한 Flexible CIGS 박막 태양전지 제조)

  • Jung, Seung-Chul;Ahn, Se-Jin;Yun, Jae-Ho;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.436-437
    • /
    • 2008
  • Flexible CIGS thin film solar cell was fabricated using STS430 plate as a flexible substrate in this work. A diffusion barrier layer of $SiO_2$ thin film was deposited on STS430 substrate by PECVD followed by deposition of double layered Mo back contact. After depositing CIGS absorber layer by co-evaporation, CdS buffer layer by chemical bath deposition, ZnO window layer by RF sputtering and Al electrode by thermal evaporation, the solar cell fabrication processes were completed and its performance was evaluated. Corresponding solar cell showed an conversion efficiency of 8.35 % with $V_{OC}$ of 0.52 V, $J_{SC}$ of 26.06 mA/$cm^2$ and FF of 0.61.

  • PDF

$ZnO_{1-x}S_x$ 버퍼층 건식 성장 시 스퍼터링 파워 변화에 따른 CIGS 태양전지 특성

  • Wi, Jae-Hyeong;Jo, Dae-Hyeong;Kim, Ju-Hui;Park, Su-Jeong;Jeong, Jung-Hui;Han, Won-Seok;Jeong, Yong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.684-685
    • /
    • 2013
  • p-형 반도체인 Cu(In,Ga)$Se_2$ (CIGS) 광 흡수 층은 이보다 에너지 밴드 간격이 큰 n-형 반도체와 이종 접합을 형성한다. 흡수층과 윈도우층 사이의 결정구조 차이와 밴드갭 에너지 차이를 완화시키기 위해 버퍼층이 필요하다. 버퍼층을 형성하는 물질로 화학적 용액 성장법(Chemical Bath deposition)을 사용한 CdS가 많이 적용되어 왔으나 Cd의 유해성 및 습식 공정으로 인한 연속공정에 대한 어려움이 있다. 따라서 버퍼층을 Cd을 포함하지 않는 ZnS, $In_2S_3$, (Zn, Mg)O 등과 같은 물질로 대체하여 원자층 증착법(Atomic Layer Deposition), 펄스레이져증착법(Pulsed Laser Deposition), 스퍼터링(sputtering) 등과 같은 건식으로 성장시키는 연구가 활발히 진행되고 있다. 본 연구에서는 $ZnO_{1-x}S_x$ ($0.2{\leq}x{\leq}0.4$)를 반응성 스퍼터링으로 증착하여 큰 밴드갭 에너지와 높은 광투과율를 갖는 버퍼층을 제작하였다. CIGS 박막의 손상을 줄여주기 위하여 RF 파워는 240, 200, 150, 100 W로 변화시켰다. CIGS 태양전지의 I-V 측정 결과, RF 파워가 150 W일 때 10.7%의 가장 높은 변환 효율을 보였고, 150 W 이상에서는 파워가 증가할 때 단락전류는 감소하였으며 개방전압은 다소 증가하였다. 반면 100 W에서 단락전류는 다소 증가하는 것에 반해 개방 전압이 급격히 낮아졌다. 이것은 파워에 따라 결합되는 산소의 양이 다르기 때문으로 생각된다.

  • PDF

Effects as Plasma Treatments on CdS Buffer Layers in CIGS Thin Film Solar Cells

  • Jo, Hyun-Jun;Sung, Shi-Joon;Hwang, Dae-Kue;Bae, In-Ho;Kim, Dae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.171-171
    • /
    • 2012
  • We have studied the effects of plasma treatments on CdS buffer layers in CIGS thin film solar cells. The CdS layers were deposited on CIGS films by chemical bath deposition (CBD) method. The RF plasma treatments of the CdS thin films were performed with Ar, $O_2 and $N_2 gases, respectively. After plasma treatments, the solar cells with Al:ZnO/i-ZnO/CdS/CIGS structures were fabricated. The surface properties of the CdS/CIGS thin films after plasma treatments were investigated with SEM, EDX and AFM measurements. The electrical properties of manufactured solar cell were discussed with the results of current-voltage measurements. The plasma treatments have a strong influence on the open circuit voltage (VOC) and the fill factor of the solar cells. Finally, a correlation between the surface properties of CdS layer and the efficiencies of the CIGS thin film solar cells is discussed.

  • PDF