• Title/Summary/Keyword: Zn(II) 착물

Search Result 49, Processing Time 0.02 seconds

Electrochemical Behavior of Zn(II)-Bilirubin Complex in N,N-Dimethylformamide (N,N-Dimethylformamide 용액 중에서 Zn(II)-Bilirubin 착물의 전기화학적 거동)

  • Zun-Ung Bae;Heung-Lark Lee;Tae-Myung Park;Moo-Lyong Seo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.7
    • /
    • pp.672-676
    • /
    • 1993
  • The complexation of bilirubin with zinc(II) and copper(II) ions was studied spectrophotometrically. In the zinc(II)-bilirubin (Zn-BR) system, complex is formed, but the copper(II) ion oxidizes bilirubin to biliverdin and then to the further oxidation products. The electrochemical reduction behavior of ZN-BR complex has been investigated with DC polarography and cyclic voltammetry. The three polarographic waves were obtained for the reduction of ZN-BR complex in DMF solution. Thde reduction current of the third wave was diffusion current, but that of the first and the second waves contained a little kinetic current.

  • PDF

Studies on the Cu (II), Ni (II) and Zn (II) Complexes with Tridentate Schiff Base Ligand (I) (세자리 Schiff Base 리간드의 Cu (II), Ni (II) 및 Zn (II) 착물에 관한 연구 (제1보))

  • Chjo Ki Hyung
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.189-193
    • /
    • 1974
  • The tridentate schiff base, salicylidene imino-o-thiolbenzene, has been synthetized from salicylaldehyde and o-amino thiolbenzene by Duff reaction. The schiff base has been reacted with Cu(II), Ni(II), and Zn(II), to form new complexes; Cu(II)$[C_{13}H_9ONS]{\cdot}3H_2O$, Ni(II)$[C_{13}H_9ONS]{\cdot}3H_2O,\;Zn(II)[C_{13}H_9ONS]{\cdot}3H_2O$ It appears that the Cu(II)-complex has tetra-coordinated configuration with the schiff base and one molecule of water, while the Ni(II) and Zn(II)-complexes have hexacoordinated configuration with the schiff base and three molecules of water. The mole ratio of tridentate schiff base ligand to metals was 1:1. These complexes have been identified by infrared spectra, visible spectra, TGA, DTA and elemental analysis.

  • PDF

Studies on the Metal Complexes with the Tetradentate Schiff Base Ligand (네자리 Schiff Base 리간드의 금속착물에 관한 연구)

  • Chjo Ki Hyung;Oh Sang-Oh;Kim Chan-ho
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.194-201
    • /
    • 1974
  • The tetradentate schiff base ligand, N,N'-bis(salicylaldehyde)-m-phenylenediimine has been prepared from salicylaldehyde and m-phenylenediamine by Duff-reaction. The schiff base ligand has been reacted with Cu(II), Ni(II), Co(II), and Zn(II) to form new complexes; Cu(II)$[C_{20}H_{14}O_2N_2]{\cdot}2H_2O, Ni(II)[C_{20}H_{14}O_2N_2]{\cdot}2H_2O, Co(III)[C_{20}H_{14}O_2N_2]{\cdot}2H_2O and Zn(II)2[C_{20}H_{14}O_2N_2]{\cdot}4H_2O$. It seems to be that the Cu(II), Ni(II) and Co(II) complexes have hexacoordinated configuration with the schiff base and two molecules of water, while Zn(II) complex has tetracoordinated configuration with the schiff base and four molecules of water. The mole ratio of tetradentate schiff base ligand to Cu(II), Ni(II) and Co(II) are 1:1 but to Zn(II) is 1:2. These complexes have been identified by visible spectra, infrared spectra, T.G.A. and elemental analysis.

  • PDF

Calculation of the Dipole Moments for Tetrahedral and Square Planar $[M(II)N_2S_2]$ Type Complexes [M(Ⅱ) = Ni(Ⅱ), Co(Ⅱ), Cu(Ⅱ) or Zn(Ⅱ)] (사면체 및 사각형 $[M(II)N_2S_2]$ 형태 착물의 쌍극자 모멘트의 계산 [M(II) = Ni(II), Co(II), Cu(II) 또는 Zn(II)])

  • Ahn Sangwoon
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 1979
  • The dipole moments for square planar and tetrahedral $[M(II)N_2S_2]$ type complexes are calculated, using the expansion method for spherical harmonics [M(II) = Co(II), Ni(II), Cu(II) or Zn(II)]. The calculated values of the dipole moments for these complexes are in the range of the experimental values. The possible structures for these complexes in benzene solution are discussed on the basis of the calculated dipole moments and the the magnetic properties.

  • PDF

A Study on Complex Formation of Heavy Metal Ions with N,N'-Oxalybis(salicylaldehyde hydrazone) (N,N'-Oxalylbis(salicylaldehyde hydrazone)과 중금속이온과의 착물 형성에 관한 연구)

  • Kyu-Seong Choi;Ick-Hee Lee;Yong-Nam Kim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.135-141
    • /
    • 1991
  • The complexation of N,N'-oxalylbis(salicylaldehyde hydrazone) (OBSH) with Zn (II), Cd (II), and Pb(II) ions was studied by polarographic method in DMSO solution. The order of stability constants was Cd(II) < Zn(II) < pb(II), and all heavy metal ions formed stable complex with OBSH ligand. The stability constants of complexation were measured at various temperatures. As the results, enthalpy and entropy changes of the complexation were distributed on the complex stabilities.

  • PDF

Stability of Tris(2-cyclohexylaminoethyl)amine-Zn(II) Complex (Tris(2-cyclohexylaminoethyl)amine-Zn(II) 착물의 안정성)

  • Yong Woon Shin;Hyun Sook Baek;Jae-Kyung Yang;Jineun Kim;Moo Lyong Seo
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.121-126
    • /
    • 2003
  • Tris(2-cyclohexylaminoethyl)amine (L) was synthesized by the Schiff base condensation reaction of tris(2-aminoethyl)amine with cyclohexanone, followed by reduction. The thermodynamic characteristics, mole ratio and formation constant of [Zn(II)-L] complex were measured by the cyclic voltammetry and isothermal titration. In the case of Zn(II), well-defined cathodic and anodic peak were obtained at -1.02V and -0.48V vs Ag/AgCl , respectively. For the [Zn(II)-L] complex, both peaks were obtained at -1.19V and -0.45V vs Ag/AgCl, respectively. In addition, the peak height gradually increases as the scan rate increases, suggesting that the currents obtained were diffusion - controlled. The mole ratio and stability constant of the complex measured cyclic voltammerty were 1:1 and logK$_f$= 5.8, respectively. And the mole ratio and stability constant of the complexe calculated by isothermal titration method was 1:1 and logK =5.4, respectively. ${\Delta}$H, ${\Delta}$G and T${\Delta}$S for the complex formation were -53.0 kJ/mol, -31.1 kJ/mol, and -21.9 J/K at 25 ${\circ}$C, respectively.

Synthesis, Characterization and Biological Studies of New Mn(II), Ni(II), Co(II), Cu(II) and Zn(II) of 2-(benzothiazol-2-yl)-N'-(2,5-dihydroxybenzylidene)acetohydrazide (2-(Benzothiazol-2-yl)-N'-(2,5-dihydroxybenzylidene)acetohydrazide의 Mn(II), Ni(II), Co(II), Cu(II) 및 Zn(II) 착물의 합성, 특성 및 생물학적 연구)

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.;Al-Hakimi, Ahmed N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.19-27
    • /
    • 2011
  • New series of Mn(II), Ni(II), Co(II), Cu(II) and Zn(II) of the 2-(benzothiazol-2-yl)-N'-(2,5-dihydroxybenzylidene) acetohydrazide have been synthesized and characterized by elemental analysis, IR, UV-vis, $^1H$-NMR, mass and ESR spectra, magnetic susceptibility and molar conductivity measurements. The spectral data and magnetic measurements of the complexes indicate that, the geometries are either square planar or octahedral. The biological activity of the ligand and its complexes against fungi (Aspergillus nigar and Fusarium oxysporium) were investigated. The metal complexes exhibited higher activity than both the parent ligand and the corresponding metal ion.

Formation of Zn(II) Complexes of Physiological Buffer Amino alcohols in Aqueous Solution (수용액 중에서 생리학적 완충제 아미노 알코올과 Zn(II) 이온과의 착물 형성)

  • Hong, Kyung-Hee;Chun, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7555-7563
    • /
    • 2015
  • The complex formation from Zn(II) ion and 2-(2-hydroxyethylamino)-2-(hydroxymethyl)-1,3-propanediol (Monotris), Bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane(Bistris) in aqueous solution at $25^{\circ}C$ and at an ionic strength of 0.10 M have been studied potentiometrically. For the Zn(II)-Monotris system, in the Monotris (L) complex $ZnL^{2+}$, one of the hydroxyl oxygen atoms as well as the amine nitrogen of the ligand are coordinated. In basic media, the coordinated hydroxyl group is deprotonated. For the Zn(II)-Bistris system, in the Bistris(L) complex $ZnL^{2+}$, two of the hydroxyl oxygen atoms as well as the amine nitrogen of the ligand are coordinated. In basic media, one of the coordinated hydroxyl groups is deprotonated. In very high basic media, an additional hydroxyl group undergoes deprotonation. The equilibrium constants for the formation of $ZnL^{2+}$, $ZnLH_{-1}{^+}$, $ZnLH_{-2}$, $Zn_2L_2H_{-2}{^{2+}}$ and $Zn_2L_2H_{-3}{^+}$ have been determined.

Extraction Equilibria and Analytical Application of Metal-Dithizone Complexes(II) Partition and Extraction Equilibria into Chloroform (디티존 금속착물의 용매추출평형과 분석적 응용(제2보) 클로로포름 용매에 대한 분배 및 추출평형)

  • Choi, Yoon-Seok;Choi, Hee-Seon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.370-377
    • /
    • 1997
  • The several fundamental parameters on the solvent extraction of Co(II), Cu(II) and Zn(II) with dithizone were investigated. The value of $K_{a1}/K_p$ of dithizone(at $25^{\circ}C$) between an aqueous phase and a chloroform was found to be $4.72{\times}10^{-11}$. And the mole ratios of metal ion to dithizone in its metal complexes were determined by mole ratio method. The extractibilities(%) for metal-dithizone chelates were obtained from the extraction equilibria of metal-dithizone complexes between an aqueous phase and a chloroform as follows. Co(II) : 92.3% at pH 8.0 : Cu(II) : 97.1% at pH 4.0 and Zn(II) : 99.0% at pH 7.0. And also, in optimum experimental conditions the extraction constants of Co(II), Cu(II) and Zn(II) were examined.

  • PDF

Complex Formation of 1,15-Diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane with Some Transition Metal Ions (전이금속이온과 1,15-Diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane과의 착물형성)

  • Cheul-Gyu Chang;Young-Kook Shin;Si-Joong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.526-531
    • /
    • 1986
  • The stability constants of 1,15-diaza-3,4:12,13-dibenzo-5,8,11-trioxacycloheptadecane (NenOdien H$_4$, L) with transition metal ions such as $Co^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Zn^{2+}$ have been determined by potentiometry in 95% methanol solution at 25$^{\circ}$C. The complex formation of the NenOdien $_4$ with the transition metal ions depends on the basicity of the donor atoms. The order of complex stability was Co(II) < Ni(II) < Cu(II) > Zn(II). The geometries of the complexes in solid state were discussed by visible-near infrared and infrared spectrophotometry, elemental analysis and electro-conductivity. The results suggest that the geometries of the solid complexes are octahedral for $[CoL_2(OH_2)Cl]Cl{\cdot}2H_2O$, $[NiL_2(OH_2)Cl]Cl{\cdot}2H_2O$, and $[ZnLCl_2]{\cdot}\frac{1}{2}H_2O$ and square pyramidal for [CuLCl]Cl, respectively.

  • PDF