• Title/Summary/Keyword: Zn(II) 이온

Search Result 113, Processing Time 0.022 seconds

Spectrophotometric Study of Acidity and Complex Formation of Anti-Inflammatory Drug Piroxicam with Some Transition Metal Ions in Different Methanol/Water Mixtures by Chemometric Methods (Chemometric 방법에 의한 메탄올/물 계에서 전이 금속 이온과 소염제 Piroxicam의 산성도 및 착체 형성에 관한 분광광도법 연구)

  • Ghasemi, Jahan B.;Jalalvand, Alireza
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.693-703
    • /
    • 2009
  • The complex formation of anti-inflamatory drug piroxicam (PX, 4-hydroxy-2-methyl-N-2--pridyl-2H-1,2-benzothiazine-3-carboxadiamide-1,1-dioxide) with transition metal ions Co(II), Ni(II), Cu(II) and Zn(II) in methanol(MeOH)/water binary mixtures were studied by spectrophotometric method at 25$^{\circ}C$, constant pH = 5.0 and I = 0.1 M. The computer program SQUAD was used to extract the desired information from the spectral data. The outputs of the fitting processes were stability constants, standard deviations of the estimated stability constants, concentration distribution diagrams and spectral profiles of all species. The sequence of the stability constants of PX complexes with Co(II), Ni(II), Cu(II) and Zn(II) follow the Cu(II) > Co(II) > Ni(II) ${\approx}$ Zn(II) order. This may be due to different geometry tendencies of these metal ions. The acidity constants of the PX were also determined under above condition from its absorption spectra at different pH values. The computer program DATAN was used for determination of acidity constants of PX. The validity of the obtained acidity constants was checked by a well known computer program SPECFIT/32. The effects of the different parameters like solvent nature, cations characteristics on the stability and acidity constants were thoroughly discussed.

Adsorptive Removal Properties of Heavy Metal Ions By Soils from the Upper Banbyun Stream (반변천 상류 주변 토양의 중금속 이온 흡착제거 특성)

  • Kim, Younjung;Hwang, Haeyeon;Kim, Yunhoi;Ryu, Sanghoon;Baek, Seungcheol;Seo, Eulwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.5-9
    • /
    • 2007
  • This study carried out to investigate the removal capacity of heavy metals such as Cu (II), Zn (II) and Cd (II) dissolved in aqueous solution in the soils collected from Hyeon-Dong (HD), San-seong (SS), Keum-chon (KC) and Keum-Hac (KH) located in the upper Banbyun stream. The pH of all the soils was weak alkali such as 8.8 9.2. According to the analysis of chemical composition of the soils, the amount of $SiO_2$, $AlO_2$ and CaO were similar in all tested soils. However, the amount of $K_2O$, $FeO_3$ and MgO were different from each soil. The XRD measurement with these soils showed that quartz and feldspar were presented in all tested soils, and the distribution of kaoline, illite, montmorillonite, vermiculite and calcite were different from each soil. The results of the removal capacity of heavy metals indicated that all the soils had more than 98% of the removal efficiency of Cu (II), Zn (II) and Cd (II), and among the heavy metals, Cu (II) was removed the most effectively. These results suggested that the soils collected from the upper Banbyun stream have the high removal capacity of heavy metals, and these soils could be used for the banking a river around the abandoned mine area, containing the higher concentrations of heavy metals than the usual stream.

  • PDF

Adsorption Characteristics of Pb(II), Cu(II), Cr(III), and Zn(II) Ions by Domestic Loess Minerals (국내산 황토를 이용한 수용액중의 Pb(II), Cu(II), Cr(III) 및 Zn(II) 이온의 흡착 특성)

  • 정의덕;김호성;원미숙;윤장희;박경원;백우현
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.497-502
    • /
    • 1999
  • Removal of Pb(Ⅱ), Cu(Ⅱ), Cr(Ⅲ), and Zn(Ⅱ) ions from aqueous solutions using the adsorption process on domestic loess minerals has been investigated. Variations of contact time, pH, adsorption isotherms and selectivity of coexisting ions and leachate were experimental parameters. YDI, YPT and KRT samples diluted in 1% aquous solution which was adjusted pH 10.8, 8.0 and 6.50, respectively. The result of XRD measurement, Quartz was mainly observed in all samples. In the case of KRT sample, Kaolinite, Feldspar, Chlorite consisting of clay minerals shows almost same pattern with YPT samples. Different properties showed from the YDI sample containing Iillite, remarkably. For all the metals, maximum adsorption was observed at 30min∼60min. Adsorption of metal ions on loess minerals were reached an equilibrium by shaking the solution for about 30min. Removal efficiency of Pb(Ⅱ) ion for KRT, YPT and YDI were 84.7%, 92% and 100%, respectively. The Cu(Ⅱ) and Zn(Ⅱ) adsorptivity on KRT showed the low in various pH solution However, those on YPT and YDI were high than 90% except for the pH 2 solution. The orders of adsorptivities for domestic loess minerals showed as following : YPT>KRT>YDI. The adsorption isotherms of Cu(Ⅱ) and Zn(Ⅱ) ions on clay minerals were fitted to a Freundlich's. Freundlich constants(1/n) of KRT and YPT domestic loess minerals were 0.63, 0.97 and 0.36, 0.25, respectively.

  • PDF

Stability Constants of Nitrogen-Oxygen Donor Macrocyclic Ligand-Metal Ion Complexes in Aqueous Solutions (질소-산소 주개 거대고리 화합물-금속착물의 수용액에서의 안정도상수)

  • Jeong Kim;Chang-Ju Yoon;Hyu-Bum Park;Si-Joong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.119-127
    • /
    • 1991
  • The protonation and the metal ion complexation of 15 to 18 membered diaza crown ether such as 1,12-diaza-3, 4 : 9, 10-dibenzo-5, 8-dioxacyclopentadecane(NtnOenH$_4$), 1,13-diaza-3,4 : 10,11-dibenzo-hydroxy-5,9-dioxacyclohexadecane(NtnOtnH$_4$), 1,13-diaza-3,4 : 10,11-dibenzo-15-hydroxy-5,9-dioxacyclohexadecane(Ntn(OH)OtnH$_4$), 1,15-diaza-3,4 : 12,13-dibenzo-5,8,11-trioxacycloheptadecane (NenOdienH$_4$) and 1,15-diaza-3,4 : 12,13-dibenzo-5,8,11-trioxacyclooctadecane(NtnOdienH$_4$) were studlied by potentiometry and NMR spectroscopy. The protonation constants were used to predict basicity of crown ethers. The sequence of the basicity was NenOdienH$_4$ < Ntn(OH)OtnH$_4$ < NtnOenH$_4$ < NtnOtnH$_4$ < NtnOdienH$_4$. Changes on the basicity were explained in terms of the effects of substituents and the degree of twistness of the macrocyclic ring. The sequence of the complex stabilities were Co(II) < Ni(II) < Cu(II) < Zn(II) for the transition metal complexes and Cd(II) < pb(II) < Hg(II) for the post-transition metal complexes. These changes on the stabilities were dependent on the basicity of the ligand and cavity size of the ring. For the heavy post-transiton metal complexes and Zn(Ⅱ) complex, the former factor was predominent and for the other transition metal complexes, the latter was affected on the stabilities. $^1$H and $^{13}$C-NMR studies for heavy post-transition metal complexes indicated that the nitrogen atom has greater affinity on metal ions than oxygen atom and the planarity of the rings was losed by the complexation with metal ions.

  • PDF

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo phenol Derivatives(II) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(II))

  • Lim, Jae-Hee;Seol, Kyung-Mi;An, Hye-Sook;Chung, Koo-Chun;Lee, Chang-Heon;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.364-372
    • /
    • 1996
  • The sorption and desorption properties of U(VI), Th(IV), Zr(IV), Cu(II), Pb(II), Ni(II), Zn(II), Cd(II) and Mn(II) ions on XAD-16-[2-(2-thiazolylazo)-p-cresol](TAC) chelating resin were studied by elution method for selective separation, concentration and recovery of trace metal ions in sea water. The optimum conditions for the sorption of metal ions were examined with respect to flow rate, pH and concentration of buffer solution. The overall capacities of some metal ions on this chelating resin were 0.41mmol U(VI)/g resin, 0.55mmol Th(IV)/g resin, 0.43mmol Cu(II)/g resin, and 0.32mmol Zr(IV)/g resin, respectively. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 5.0 was found as Th(IV)>Cu(II)>U(VI)>Zr(IV)>Pb(II)>Ni(II)>Zn(II)>Cd(II)>Mn(II). Desorption of characteristics for metal ions were investigated with desorption agents such as $HNO_3$, HCl, $HClO_4$, $H_2SO_4$, and $Na_2CO_3$. It was found that most of metal ions except Zr(IV) showed high desorption efficiency with 2M $HNO_3$. But, desorption and recovery of Zr(IV) ion were successfully performed with 1M $H_2SO_4$. The resin was applied for separation and preconcentration of trace amount of U(VI) ion from artificial sea water and the recovery of U(IV) was over 96%.

  • PDF

Retardation Effect and Mobility of a Heavy Metal in a Sandy Soil (사질토양에서의 중금속의 지연효과와 이동성)

  • Kim, Dong-Ju;Baek, Doo-Sung
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.155-161
    • /
    • 1998
  • Retardation effect of heavy metals in soils caused by adsorption onto the surfaces of solids particles is well known phenomenon. In this study, we investigated the retardation effect on the mobility of a Zn in a sandy soil by conducting batch and column tests. The column test consisted of monitoring the concentrations of effluent versus time known as a breakthrough curve (BTC). We used NaCl and ZnCl$_2$ solutions with the concentration of 10 g/L as a tracer, and injected them respectively into the inlet boundary of the soil sample as a square pulse type, and monitored the effluent concentrations at the exit boundary under a steady state condition using an EC-meter and ICP-AES. The batch test was conducted based on the standard procedure of equilibrating fine fractions collected from the soil with various initial ZnCl$_2$ concentrations, and analysis of Zn ions in the equilibrated solutions using ICP-AES. The results of column test showed that i) the peak concentration of ZnCl$_2$analyzed by ICP was far less than that of either NaCl or bulk electrical conductivity and ⅱ) travel times of peak concentrations for two tracers were more less identical. The relatively low concentration of Zn can be explained by ion exchange between Zn and other cations, and possible precipitation of Zn in the form of Zn(OH)$_2$due to high pH range (7.0∼7.9) of the effluent. The identical result of travel times of peak concentrations indicates that the retardation effect is not present in the soil. The only way to describe the prominent decrease of Zn ion was to introduce decay or sink coefficient in the CDE model to account for irreversible decrease of Zn ions in the aqueous phase.

  • PDF

Adsorption Behavior of Metal ions by Na-Cellulose (Na-셀룰로스에 대한 금속이온들의 흡착성에 관한 연구)

  • Lee, Tack-Hyuck;Yoon, Koog-Joong
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.271-276
    • /
    • 1994
  • A Na-cellulose adsorbent was prepared by treating Sigma S-5504 cellulose with 2M NaOH and examined the adsorption behavior between metal ions and Na-cellulose in aqueous solution with batch method. Considering ion exchange capacity of Na-cellulose, the adsorption ratio of the Na-cellulose to metals charge equivalent indicated that the adsorption result from ion exchanging between metal ions and Na-cellulose. The enthalpy for the metal adsorption on the Na-cellulose was calculated to -18kcal/mol, which value was compared to those of carboxymethylcellulose(CMC) and Dowex 50W-X8, these result suggested that the adsorption on Na-cellulose resulted from ion exchange adsorption.

  • PDF

Synthesis, Characterization and Biological Studies of New Mn(II), Ni(II), Co(II), Cu(II) and Zn(II) of 2-(benzothiazol-2-yl)-N'-(2,5-dihydroxybenzylidene)acetohydrazide (2-(Benzothiazol-2-yl)-N'-(2,5-dihydroxybenzylidene)acetohydrazide의 Mn(II), Ni(II), Co(II), Cu(II) 및 Zn(II) 착물의 합성, 특성 및 생물학적 연구)

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.;Al-Hakimi, Ahmed N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.19-27
    • /
    • 2011
  • New series of Mn(II), Ni(II), Co(II), Cu(II) and Zn(II) of the 2-(benzothiazol-2-yl)-N'-(2,5-dihydroxybenzylidene) acetohydrazide have been synthesized and characterized by elemental analysis, IR, UV-vis, $^1H$-NMR, mass and ESR spectra, magnetic susceptibility and molar conductivity measurements. The spectral data and magnetic measurements of the complexes indicate that, the geometries are either square planar or octahedral. The biological activity of the ligand and its complexes against fungi (Aspergillus nigar and Fusarium oxysporium) were investigated. The metal complexes exhibited higher activity than both the parent ligand and the corresponding metal ion.

The analysis of Bismuth metal and its alloy by using of cation exchanger (양이온교환수지에 의한 비스무트 지금 및 합금의 분리 정량)

  • Myon-young Park;Byong-Cho Lee;Kee-Chae Park
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.49-54
    • /
    • 1971
  • It is shown that the impurities of Cu(II), Pb(II), Zn(II) and Ag(I) in Bismuth metal and the components of Pb(II), Zn(II) and Sn(IV) in Bismuth alloy are separated into their components from each other by elutions through $3.14cm^2{\times}10cm$ cation exchange resin, $Dowex\;50w\;{\times}\;8$ (100~200 mesh), column with the mixed solutions of HAc and NaAc as the eluents. The elution curve of Fe(III) has a long tailing and is not separated quantitatively from Bi(III). The eluents used for this separation are as follows; 1M HAc + 0.1M NaAc (pH 3.36) for Fe(III) and Bi (III). 0.3M HAc + 0.3M NaAc (pH 4.70) for Cu(II), Pb(II) and Zn(II). 0.5M HAc + 0.5M NaAc (pH4.70) for Ag(I) and Sn(IV). The analysis of cations eluted are carried out by spectrophotometry and EDTA titrimetry. Their recoveries are more than 99%.

  • PDF

Stability Constants for Co(II) and Zn(II) of Multidentate N,O-Schiff Base Ligands in Dioxane-Water Mixtures (물-디옥산 혼합용매에서 여러자리 산소-질소계 Schiff 염기리간드와 코발트(II) 및 아연(II)이온의 착물 안정도상수)

  • Kim, Sun-Deuk;Kim, Jun-Kwang;Lee, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.145-149
    • /
    • 1998
  • Stability constants for the complexes of multidentate N,O-Schiff base ligands (bis-(salicylaldehyde)ethylendiamine(SED), bis-(salicylaldehyde)propylendiamine(SPD), bis-(salicylaldehyde)diethylenetriamine(SDT), bis-(salicylaldehyde)triethylenetetraamine(STT), and bis-(salicylaldehyde)tetraethylenepentaamine(STP) with Co(II) and Zn(II) were determined by a potentiometric method in a 70% dioxane-30% water mixture and ethanol, respectively. Stability constants for the complexes increased in the order of SPD

  • PDF