• Title/Summary/Keyword: Zircaloys

Search Result 2, Processing Time 0.018 seconds

Analysis of Zirconium and Nickel Based Alloys and Zirconium Oxides by Relative and Internal Monostandard Neutron Activation Analysis Methods

  • Shinde, Amol D.;Acharya, Raghunath;Reddy, Annareddy V.R.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.562-568
    • /
    • 2017
  • Background: The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Methods: Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. Results: In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. Conclusion: The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples.

Internal Hydriding of Defected Zircaloy Cladding Fuel Rods : A Review (결함 핵연료 피폭관 내부에서의 수소 침투에 관한 개론적 고찰)

  • Kim, Yongsoo;Donald R. Olander;Wonmok Jae
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.570-587
    • /
    • 1993
  • Recently a number of severe fuel degradation events, seemingly due to internal secondary hydriding, have been reported. This paper reviews internal hydriding of defected zircaloy cladding. First, the history of zircaloy cladding development and the environment of the zircaloys in service in the nuclear reactor are introduced. Fundamental aspects of zircaloy hydriding, such as hydrogen permeability in zirconium oxide, terminal solubility and precipitation in zirconium and its alloys, and the deleterious effect of hydrides are reviewed. The mechanism of massive internal hydriding in defected zircaloy fuel rods is qualitatively described based on the observed phenomena. Significant factors affecting the hydriding process are discussed. A quantitative model for the massive hydriding as a part of an effort to mitigate fuel degradation is briefly mentioned and necessary information and recommended future work for improvement of the model are outlined.

  • PDF