• Title/Summary/Keyword: Zinc-ion

Search Result 275, Processing Time 0.03 seconds

Studies on Cd and Removal Ability and Detoxification of Oenanthe stolonifera (미나리 ( Oenanthe stolonifera ) 의 Cd, Zn 제거능과 내성에 관한 연구)

  • Lee Soo;In Sook Lee
    • The Korean Journal of Ecology
    • /
    • v.19 no.6
    • /
    • pp.519-527
    • /
    • 1996
  • To examine the possibility of biomonitoring of heavy metal removal ability and soil, a study was performed to investigate the heavy metal removal ability and metal-binding protein (MBP) as detoxification process using Oenanthe stolonifera. After O. stolonifera was exposed to individuals (cadmium, zinc) and mixture (cadmium+zinc)for 4 days, removal rate of heavy metal and pH in the treatment medium was measured. MBP was assayed by means of ion exchange column chromatography. The exposure to mixture (Cd:76.8%, Zn:75%) rather than individuals (Cd:82.9%, Zn:90.4%) showed a synergism raising the toxic effect. Initial removal rate was different for each heavy metal : in case of exposure to cadmium it was over 60% on day 1, while for zinc it was 75~90% on day 4. Throughout the experimental period, pH value of treatment medium continuously decreased, since cortex in the roots may secret organic acid to adjust and prevent toxicity of metals. The existence or MBP in the 70~80 fraction and the presence of Zn-enzyme pool was ascertained with the column chromatography. This study demonstrated a possibility that heavy utilized as a biomarker of heavy metal pollution.

  • PDF

Respondence Between Electrochemicl Fluctuations and Phenomenon for Localized Corrosion of Less-Noble Metals

  • Itoi, Yasuhiko;Take, Seisho;Tsuru, Tooru
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.35-39
    • /
    • 2008
  • We have been studying application of electrochemical noise (Fluctuation) analysis for localized corrosion. Foils of Zinc, Aluminum and Magnesium were used as specimens for electrochemical cell simulating localized corrosion. These specimens were dipped in sodium chloride solutions adjusted to each exponent of Hydrogen ion concentration (pH) condition of 5.5, 10, 12 respectively. Time variations of potential and current were measured in those solutions, and simultaneously the surfaces of specimens were observed using microscope with television monitor. Two types of electrochemical cells were arranged for experiments simulated localized corrosion. The fluctuations on trendy component of short-circuited potential and short-circuited current were appeared in synchronization. It was seemed that these fluctuations result from hydrogen evolution on the aluminum active site in the crevice from the microscopic observation. In the case of zinc and magnesium, fluctuations appeared on the trendy component of the corrosion potential. Two types fluctuation were detected. First one is the fluctuation varied periodically. The second one is the random fluctuation. It was seemed that these fluctuations result from generation of corrosion products and hydrogen evolution on the active site in the crevice of zinc and magnesium from the microscopic observation.

Inhibition of Hydrogen Formation with Calcium Hydroxide on Zinc Electrode of Film-type Manganese Battery

  • Yun, Je-Jung;Kim, Nam-In;Hong, Chang Kook;Park, Kyung Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.135-138
    • /
    • 2015
  • A manganese dioxide (MnO2) layer and zinc (Zn) layer are used as the cathode and the anode to develop filmtype manganese battery, in which a stack of a MnO2 layer, gel electrolyte, and Zn layer are sandwiched between two plastic layers. This paper describes the chemical equation of swelling control upon the film-type manganese battery. We examined the reduction of hydrogen formation, by using calcium hydroxide Ca(OH)2 as an additive in the electrolyte of film-type manganese battery. The phenomena or an effect of reduced hydrogen gas was proven by cyclic voltammogram, X-ray photoelectron spectra (XPS), and volume of hydrogen formation. The amount of H2 gas generation in the presence of Ca2+ ion was reduced from 4.81 to 4.15 cc/g-zinc (14%), and the corrosion of zinc electrode in the electrolyte was strongly inhibited as time passed.

Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

  • Kouril, M.;Pokorny, P.;Stoulil, J.
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2017
  • Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

Crystal Structure of the Metallo-Endoribonuclease YbeY from Staphylococcus aureus

  • Jinwook Lee;Inseong Jo;Ae-Ran Kwon;Nam-Chul Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Endoribonuclease YbeY is specific to the single-stranded RNA of ribosomal RNAs and small RNAs. This enzyme is essential for the maturation and quality control of ribosomal RNA in a wide range of bacteria and for virulence in some pathogenic bacteria. In this study, we determined the crystal structure of YbeY from Staphylococcus aureus at a resolution of 1.9 Å in the presence of zinc chloride. The structure showed a zinc ion at the active site and two molecules of tricarboxylic acid citrate, which were also derived from the crystallization conditions. Our structure showed the zinc ionbound local environment at the molecular level for the first time. Molecular comparisons were performed between the carboxylic moieties of citrate and the phosphate moiety of the RNA backbone, and a model of YbeY in complex with a single strand of RNA was subsequently constructed. Our findings provide molecular insights into how the YbeY enzyme recognizes singlestranded RNA in bacteria.

Cytotoxicity of Root Canal Sealers Containing Calcium Hydroxide

  • Kim, In-Geol;Han, Se-Hee;Cho, Young-Gon;Lee, Sang-Bae;Kim, Kwang-Mahn;Kim, Kyoung-Nam
    • Journal of Korean Dental Science
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 2009
  • The purpose of this study was to investigate the possibility to reduce the toxicity of oil based root canal sealers containing calcium hydroxide using MTT & agar overlay assays. Thus some formulations of traditional root canal sealers were replaced with oil-soluble solvents and experimental root canal sealers manufactured. In MTT assay, Cell viability of all experimental sealers in addition with oil soluble solvents were observed significantly higher than both control groups, especially according to replace zinc and/or calcium ion components. Also agar overlay assay was appeared moderate to no cell responses into modifying both zinc and/or calcium ion components and oil soluble solvent weight. Authors found the reducing effect of cell toxicity through significant role of oil soluble solvent factor into root canal sealer containing calcium hydroxide.

  • PDF

A Study of the Etched ZnO Thin Films Surface by Reactive Ion in the Cl2/BCl3/Ar Plasma (Cl2/BCl3/Ar 플라즈마에서 반응성 이온들에 의해 식각된 ZnO 박막 표면 연구)

  • Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.747-751
    • /
    • 2010
  • In the study, the characteristics of the etched Zinc oxide (ZnO) thin films surface, the etch rate of ZnO thin film in $Cl_2/BCl_3/Ar$ plasma was investigated. The maximum ZnO etch rate of 53 nm/min was obtained for $Cl_2/BCl_3/Ar$=3:16:4 sccm gas mixture. According to the x-ray diffraction (XRD) and atomic force microscopy (AFM), the etched ZnO thin film was investigated to the chemical reaction of the ZnO surface in $Cl_2/BCl_3/Ar$ plasma. The field emission auger electron spectroscopy (FE-AES) analysis showed an elemental analysis from the etched surfaces. According to the etching time, the ZnO thin film of etched was obtained to The AES depth-profile analysis. We used to atomic force microscopy to determine the roughness of the surface. So, the root mean square of ZnO thin film was 17.02 in $Cl_2/BCl_3/Ar$ plasma. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the plasmas.

Zinc(II) ion promotes anti-inflammatory effects of rhSOD3 by increasing cellular association

  • Kim, Younghwa;Jeon, Yoon-Jae;Ryu, Kang;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.85-90
    • /
    • 2017
  • Recently, we demonstrated that superoxide dismutase 3 (SOD3) is a strong candidate for biomedicine. Anti-oxidant function of SOD3 was accomplished without cell penetration, and it inhibited the inflammatory responses via non-enzymatic functions. SOD3 has the heparin binding domain associating cell surface. Interestingly, we found that $Zn^{2+}$ promotes transduction effects of recombinant human SOD3 (rhSOD3) by increasing uptake via the heparin binding domain (HBD). We demonstrated an uptake of rhSOD3 from media to cell lysate via HBD, resulting in an accumulation of rhSOD3 in the nucleus, which was promoted by the presence of $Zn^{2+}$. This resulted in increased inhibitory effects of rhSOD3 on NF-{\kappa}B and STAT3 signals in the presence of $Zn^{2+}$, which shows elevated association of rhSOD3 into the cells. These results suggest that an optimized procedure can help to enhance the inflammatory efficacy of rhSOD3, as a novel biomedicine.

Effect of VO(II) Doping on Structural and Optical Properties of Diaquamalonato(1,10-phenanthroline)zinc(II)

  • Hema, Ramesh;Parthipan, Krishnan;Ramachitra, Somasundaram;Balaji, Subramanian
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3547-3552
    • /
    • 2013
  • Single crystal EPR and optical studies of a mixed ligand zinc(II) complex doped with VO(II) ion is carried out to establish the structural properties. The angular variation of vanadyl hyperfine lines indicates a single site, with spin Hamiltonian parameters as: $g_{xx}=1.985$, $g_{yy}=1.979$, $g_{zz}=1.943$; $A_{xx}=8.71$, $A_{yy}=6.41$ and $A_{zz}=17.80$ mT. By comparing the direction cosines of principal g and A values with the direction cosines of metalligand bonds, it has been confirmed that the vanadyl ion has entered the lattice interstitially. The exact interstitial position of VO(II) in host lattice has been calculated using the fractional coordinates of atoms in the host lattice out of many assumptions. The EPR and optical data have been confirmed to obtain various bonding parameters, from which the nature of the bonding in the complex is discussed. FT-IR confirms the formation of structure of host lattice.

Structural analysis and photoluminescent study of thin film rhombohedral zinc orthosilicate doped with manganese

  • Yoon, Kyung-Ho;Kim, Joo-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.114-114
    • /
    • 2010
  • In this study, structural properties and photoluminescent characteristics of thin film rhombohedral zinc orthosilicate doped with manganese ($Zn_2SiO_4:Mn$) were investigated. The $Zn_2SiO_4:Mn$ films showed a pronounced absorption edge in the near ultraviolet wavelength region and a high optical transparency in the visible spectral range. The maximum transmittance reached 0.922 at 597 nm, which was very close to the transmittance of the fused quartz substrate alone (0.935). The $Zn_2SiO_4:Mn$ films were composed of rhombohedral polycrystalline grains with random crystallographic orientation. The broad-band photoluminescence emission peaked at around 525 nm was observed from the $Zn_2SiO_4:Mn$ films, which was ascribed to the radiative relaxation from the $^4T_1$ lowest excitation state to $^6A_1$ ground state of 3d5 electrons in divalent manganese ion. The excitation band exhibited a peak maximum at 259 nm in the near ultraviolet region, which was considered to be associated with the charge transfer transition of divalent Mn ion in the $Zn_2SiO_4$ system.

  • PDF