• Title/Summary/Keyword: Zinc-ion

Search Result 277, Processing Time 0.031 seconds

Effect of Biochar bead on Adsorption of Heavy Metals

  • Kim, Ho-Jin;Lee, Hochul;Kim, Hyuck-Soo;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.351-355
    • /
    • 2014
  • In recent years, biochar has received much attention as soil amendment, enhancing soil fertility and reducing toxicity of heavy metals with its large specific surface area and high pH. Biochar has also the effect of alleviating global warming by carbon sequestration from recycling organic wastes by pyrolysis. However, scattering of fine particles of biochar is a hindrance to expand its use from human health point-of-view. Alginate, a natural polymer without toxicity, has been used for capsulation and hydrogel fabrication due to its cross-linking nature with calcium ion. In this study, the method of cross-linkage between alginate and calcium ion was employed for making dust-free biochar bead. Then an equilibrium adsorption experiment was performed for verifying the adsorption effect of biochar bead on heavy metals (cadmium, copper, lead, arsenic, and zinc). Results showed that biochar bead had effects on adsorbing heavy metals, especially lead, except arsenic.

Novel Synthesis of Hydrophilic Dipolar Chromophores using Dendronized Sulfonates

  • Kim, Mi-Rae;Maheswara, Muchchintala;Do, Jung-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.664-672
    • /
    • 2011
  • A series of hydrophilic chromophores was synthesized through introduction of dendritic sulfonate anions using click chemistry. A dendron structure bearing several sulfonate groups enhances hydrophilicity of attached chromophores. A click triazole formation connects chromophores with hydrophilic groups. A neutral trichloroethyl sulfonate has versatile features such as easy introduction, chemical endurance for isolation or storage, and convenient transformation to a hydrophilic anion. Zinc and OH mediated cleavage of trichloroethyl group from the neutral sulfonate undergoes to generate a water-soluble sulfonate anion. The solubility was examined with different counter cations and in different pH media and thus increased with the number of attached sulfonate ion. Two hydrophilic chromophores of stilbene-derived and azobenzene-derived dipolar structures exhibit clear negative and positive solvatochromism in protic solvents, respectively.

Adsorption of Rare Earth Metal Ion on N-Phenylaza-15-Crown-5 Synthetic Resin with Styrene Hazardous Material

  • Kim, Se-Bong;Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • Resins were synthesized by mixing N-phenylaza-15-crown-5 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous materials) divinylbenzene (DVB) copolymer with crosslink of 1%, 2%, 6%, and 12% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, thermo gravimetric analysis (TGA), surface area, and IR-spectroscopy. The effects of pH, equilibrium arrival time, dielectric constant of solvent and crosslink on adsorption of metal ions by the synthetic resin adsorbent were investigated. The metal ions were showed fast adsorption on the resins above pH 4. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium (VI) > zinc (II) > europium (III) ions. The uranium ion adsorbed in the order of 1%, 2%, 6%, and 12% crosslink resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.

Properties of ZnO thin film grown on $Al_2O_3$ substrate pretremented by nitrogen ion beam (이온빔으로 질화처리된 사파이어기판위에 성장한 ZnO박막의 특성)

  • Park, Byung-Jun;Jung, Yeon-Sik;Park, Jong-Young;Choi, Du-Jin;Choi, Won-Kook;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.413-416
    • /
    • 2004
  • In this study, zinc oxide(ZnO) having large misfit(18.2%) with sapphire was tried to be grown on very thin nitride buffer layers. For the creation of various kinds of nitride buffer layer, sapphire surface was modified by an irradiation of nitrogen ion beam with low energy generated from stationary plasma thruster(SPT) at room temperature. After the irradiation of ion beam, Al-N and Al-O-N bonding was identified to be formed as nitride buffet layers. Surface morphology was measured by AFM and then ZnO growth was followed by pulsed laser deposition(PLD). Their properties are analyzed by XRD, AFM, TEM, and PL. We observed that surface morphology was improved and deep level emission related to defects was almost vanished in PL spectra from the ZnO grown on nitride buffer layer.

  • PDF

Zinc Ions Affect Siderophore Production by Fungi Isolated from the Panax ginseng Rhizosphere

  • Hussein, Khalid Abdallah;Joo, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.105-113
    • /
    • 2019
  • Although siderophore compounds are mainly biosynthesized as a response to iron deficiency in the environment, they also bind with other metals. A few studies have been conducted on the impact of heavy metals on the siderophore-mediated iron uptake by microbiome. Here, we investigated siderophore production by a variety of rhizosphere fungi under different concentrations of $Zn^{2+}$ ion. These strains were specifically isolated from the rhizosphere of Panax ginseng (Korean ginseng). The siderophore production of isolated fungi was investigated with chrome azurol S (CAS) assay liquid media amended with different concentrations of $Zn^{2+}$ (50 to $250{\mu}g/ml$). The percentage of siderophore units was quantified using the ultra-violet (UV) irradiation method. The results indicated that high concentrations of $Zn^{2+}$ ion increase the production of siderophore in iron-limited cultures. Maximum siderophore production by the fungal strains was detected at $Zn^{2+}$ ion concentration of $150{\mu}g/ml$ except for Mortierella sp., which had the highest siderophore production at $200{\mu}g/ml$. One potent siderophore-producing strain (Penicillium sp. JJHO) was strongly influenced by the presence of $Zn^{2+}$ ions and showed high identity to P. commune (100% using 18S-rRNA sequencing). The purified siderophores of the Penicillium sp. JJHO strain were chemically identified using UV, Fourier-transform infrared spectroscopy (FTIR), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) spectra.

Effects of Synthesis Conditions on Luminescence Characteristics of Glutathione Capped ZnSe Nano particles (글루타티온이 캡핑된 ZnSe 나노 입자 발광 특성에 미치는 합성 조건의 영향)

  • Back, Geum Ji;Song, Ha Yeon;Lee, Min Seo;Hong, Hyun Seon
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.44-50
    • /
    • 2021
  • Zinc selenide (ZnSe) nanoparticles were synthesized in aqueous solution using glutathione (GSH) as a ligand. The influence of the ligand content, reaction temperature, and hydroxyl ion concentration (pH) on the fabrication of the ZnSe particles was investigated. The optical properties of the synthesized ZnSe particles were characterized using various analytical techniques. The nanoparticles absorbed UV-vis light in the range of 350-400 nm, which is shorter than the absorption wavelength of bulk ZnSe particles (460 nm). The lowest ligand concentration for achieving good light absorption and emission properties was 0.6 mmol. The reaction temperature had an impact on the emission properties; photoluminescence spectroscopic analysis showed that the photo-discharge characteristics were greatly enhanced at high temperatures. These discharge characteristics were also affected by the hydroxyl ion concentration in solution; at pH 13, sound emission characteristics were observed, even at a low temperature of 25℃. The manufactured nanoparticles showed excellent light absorption and emission properties, suggesting the possibility of fabricating ZnSe QDs in aqueous solutions at low temperatures.

Synthesis, Structures and Photoluminescent Properties of Two Novel Zinc(II) Compounds Constructed from 5-Sulfoisophthalic Acid

  • Zhu, Yu-Lan;Tang, Xue-Ling;Ma, Kui-Rong;Chen, Hao;Ma, Feng;Zhao, Lian-Hua
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1881-1886
    • /
    • 2010
  • Hydrothermal reaction of zinc(II) salts with 5-sulfoisophthalic acid monosodium salt ($NaO_3SC_6H_3$-1,3-(COOH)$_2$, $NaH_2$-SIP) and 1,10-phenanthroline (phen) led to two new compounds, [Zn(phen)$_3$$\cdot2H_2SIP\cdot4H_2O$ (1) and [Zn(phen)$_2(H_2O)_2]\cdot2H_2SIP\cdot2H_2O$ (2). They were characterized by element analysis, IR spectroscopy, thermalgravimetric analysis (TGA), X-ray powder diffraction (XRD), and single-crystal X-ray diffraction. Both compounds 1-2 represent the first example of Zn/phen/SIP system. The Zn (II) ion in 1 is six-coordinated by six nitrogen atoms from three phen molecules, and the $H_2SIP^-$ ligands engage in the formation of hydrogen bond. The Zn(II) ion in 2 is coordinated by four nitrogen atoms from two phen molecules and two oxygen atoms from two water molecules. Moreover, both 1 and 2 are assembled into 3D supramolecular architectures by hydrogen bonds (O-H$\ldots$O) and $\pi-\pi$ interactions. Solvent water molecules occupying voids of the compounds serve as receptors or donors of the extensive O-H$\ldots$O hydrogen bonds.

The Effect of pH on Citric Acid Leaching of Soil Contaminated with Heavy Metals (중금속(重金屬) 오염토양(汚染土壤)의 구산(枸酸) 침출(浸出)에 대한 pH의 영향(影響))

  • Jung, Kyungbae;Park, Hongki;Yoo, Kyoungkeun;Park, Jay Hyun;Choi, Ui Kyu
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.13-19
    • /
    • 2013
  • The effect of pH on the citrate leaching behavior of heavy metal ion was investigated to develop an eco-friendly process for removing heavy metals from soil contaminated with copper, zinc, and lead. The leaching tests were performed using citrate solution with pH adjusted by mixing citric acid and sodium citrate under the following leaching conditions: particle size, under $75{\mu}m$; temperature, $50^{\circ}C$; citrate concentration, $1kmol/m^3$; pulp density, 5%; shaking speed, 100 rpm; leaching time, 1 hour. The difference of pH before and after the leaching test was not observed, and this result indicates the direct effect of hydrogen ion concentration on the leaching of metals was insignificant. The removal ratios of copper, zinc, and lead from the contaminated soil decreased with increasing pH. The thermodynamic calculation suggests that the leaching behaviors of metal ions were determined by two reactions; one is the reaction to form complex ions between heavy metal ions and citrate ion species, and the other is the reaction to form metal hydroxide between heavy metal ions and hydroxide ion.

EPR Study of the High $T_c$ Superconductor $YBa_2$$Cu_3$$O_{7-y}$ Doped with Palladium or Zinc

  • Hag Chun Kim;Hyunsoo So;Ho Keun Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.499-504
    • /
    • 1991
  • EPR spectra of the high $T_c$ superconductor $YBa_2Cu_3O_{7-y}$ (YBCO) doped with $Pd^{2+} or Zn^{2+}$ have been measured at several temperatures and dopant concentrations. The spectral intensity of $YBa_2({Cu_{1-x}}{Pd_x})_3O_{7-y}$ is proportional to the dopant concentration. The behavior of $YBa_2(Cu_{1-x}Zn_x)_3O_{7-y}$ is quite different: the spectral intensity remains almost constant up to x=0.10 and then increases rapidly above x=0.10. The results are interpreted in terms of localized and antiferromagnetically spin-paired d holes in both CuO chain and planes. The $Pd_{2+}$ ion substitutes on the CuO chain consisting of "CuOCu dimers", and a $Cu_{2+}$ ion with an unpaired spin is gene rated for each $Pd_{2+}$ ion substituted. On the other hand, $Zn_{2+}$ substitutes on the CuO planes, and all or most of the spins in the two-dimensional plane manage to pair up in the region of low dopant concentration. When the dopant concentration exceeds a certain limit, it becomes more difficult for the spins to find partners, and the number of unpaired spins increases rapidly with increasing dopant concentration. The $Zn_{2+}$ ion is more effective than the $Pd_{2+}$ ion in suppressing the superconductivity of YBCO. This is attributed to the fact that $Zn_{2+}$ substitutes on the CuO planes which are mainly responsible for the superconductivity, while $Pd_{2+}$ substitutes on the CuO chain which is of secondary importance in the superconductivity.