• Title/Summary/Keyword: Zinc-Aluminum

Search Result 234, Processing Time 0.027 seconds

Effects of Heavy Metals on Growth and Protein Synthesis in Cyanobacterium synechocystis sp. PCC 6803 (중금속이 Cyanobacterium synechocystis sp.PCC 6803의 성장과 단백질 합성에 미치는 영향)

  • 강경미;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.4
    • /
    • pp.315-329
    • /
    • 1996
  • The changes of growth and protein synthesis pattern by aluminum (Al), cadmium (Cd), zinc (Zn) treatments were studied in Cyanobacterium synechocystis sp. PCC 6803. When exposed to Al from 5ppm to 3oppm, synechocystis grows normally. But more than that retard the growth of algae notably. The 0.05ppm Cd additions had no effect on the growth of algae. 0.1, 0.2, and 0.5ppm Cd inhibited growth. Under 1 and 2ppm Cd stress, growth was greatly diminished. Zn had dual effects. The growth of algae in media containing 5ppm was stimulated. As concentration increases more than l5ppm, growth inbition increases. Under 25ppm Zn stress, growth was greatly diminished. According to logistic theory, r and K values of each heavy metal-treated groups were estimated. Correlation analysis of r and K values with metal concentration shows that there is negative correlation between K and concentration in Cd and Zn treatments. Critical concentration which shows lethal or sublethal effect was estimated by t-test of each r and K value. The cells cultured in 10, 20, 30, 40 and 5oppm of Al, 1 and 2ppm of Cd, and 10, 15, 20, 25 and 30ppm of Zn for 4 days was used for protein analysis. Analysis of protein synthesis with SDS-PACE showed alterations of protein synthesis pattern. The synthesis of protein about 220kD increased markedly. In this study, it showed that resistance mechanism against Al, Cd, and Zn is K selection and that metal stress induced the change of protein synthesis in Cyanobacterium synechocystis sp. PCC 6803.Key words:Cyanobacterium synechocystis sp. FCC 6803, Heavy metals, Aluminum, Cadmiutm Zinc, Crowth, Frotein synthesis.

  • PDF

A Study on the Design/Simulation and Manufacturing for Localization of Parts in Scoop Control Assembly of Small Military Boat (소형 선박 제어 헤드 조립체의 국산화를 위한 설계/해석, 제작에 관한 연구)

  • Yeog, Gyeong-Hwan;Kim, Jae-Hyun;Jin, Chul-Kyu;Chun, Hyeon-Uk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.597-608
    • /
    • 2021
  • The control head components used in small military vessels are designed to be domestically produced, prototypes, structural analysis, and casting methods are designed and cast. The control head assembly consists of a lever, an aluminum outside cover, Middle, front gear cover, back gear cover, and a zinc worm gear. In order to reverse the design of each component, 3D scanning device was used, 3D modeling was performed by CATIA, and prototype productions were carried out by 3D printer. In order to reduce the cost of components, gating system is used by gravity casting method. The SRG ratio of 1:0.9:0.6 was set by applying non-pressurized gating system to aluminum parts, 1:2.2:2.0 and pressurized gating system to zinc parts, and the shapes of sprue, runner and gate were designed. The results of porosity were also confirmed by casting analysis in order to determine whether the appropriate gating system can be designed. The results showed that all parts started solidification after filling completely. ANSYS was used for structural analysis, and the results confirmed that all five components had a safety factor of 15 more. All castings are free of defects in appearance, and CT results show only very small porosity. ZnDC1 zinc alloy worm gear has a tensile strength of 285 MPa and an elongation of 8%. The tensile strength of the four components of A356 aluminum alloy is about 137-162 MPa and the elongation is 4.8-6.5%.

Experiments of Electromagnetic Pump using Linear Induction Motor (선형유도전동기를 이용한 전자기 펌프 실험)

  • Jeon, Mun-Ho;Kim, Jung-Hyun;Kim, Min-Seok;Kim, Chang-Eob
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.691-692
    • /
    • 2006
  • The electromagnetic pump can transfer molten metals by the electromagnetic force of LIM for molten metals, which are zinc, tin and aluminum. The speed and quantity of the flow are analyzed using magnetohydrodynamics. The molten zinc is used in the experiment and the experimental results are compared with the analysis.

  • PDF

Current Status of Zinc Smelting and Recycling (아연의 제련 및 리사이클링 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.30-41
    • /
    • 2019
  • Global production of zinc is about 13 million tons and zinc is the fourth-most widely used primary metal in the world following iron, aluminum and copper. When zinc is recycled to produce secondary zinc, it can save about 75 % of the total energy that is needed to produce the primary zinc from ore, and in therms of $CO_2$ emissions reduced by about 40 %. However, since zinc is mainly used for galvanizing of steel, the recycling rate of zinc is about 25 %, which is lower than other metals. The raw materials for recycling of zinc include dusts generated in the production of steel and brass, sludge in the production process of non-ferrous metals, dross in the melting of zinc ingots or hot dip galvanizing, waste batteries, and metallic scrap. Among them, steelmaking dust and waste batteries are most actively recycled up to now. Most of the recycling process uses pyrometallurgical methods. Recently, however, much attention has been given to a combined process of pyrometallurgical and hydrometallurgical processes.

Structural and Electrical Properties of Aluminum Doped ZnO Electrodes Prepared by Atomic Layer Deposition for Application in Organic Solar Cells (유기태양전지 응용을 위한 원자층 증착 방식 제작의 알루미늄이 도핑 된 ZnO의 전기적, 구조적 특징)

  • Seo, Injun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.1-5
    • /
    • 2014
  • Transparent and conducting aluminum-doped ZnO electrodes were fabricated by atomic layer deposition methods. The electrode showed the lowest resistivity of $5.73{\times}10^{-4}{\Omega}cm$ at a 2.5% cyclic layer deposition ratio of Trimethyl-aluminum and Diethyl-zinc chemicals. The electrodes showed minimum resistivity when deposited at a temperature of $225^{\circ}C$. The electrode also showed optical transmittance of about 92% at 300 nm. An organic solar cell made with a 300-nm-thick aluminum-doped ZnO electrode exhibited 2.0% power conversion efficiency.

Crashworthiness Evaluation of Bridge Barriers Built with Hot-dip Zinc-aluminium-magnesium Alloy-coated Steel (고내식성 용융합금도금강판 적용 교량난간의 충돌성능 평가)

  • Noh, Myung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • This paper proposes road safety facilities applying Hot-dip zinc-aluminum-magnesium alloy-coated steel sheets and coils to reduce the loss of function caused by the corrosion of steel in the service state. Vehicle crash simulations and full-scale crash tests were carried out to provide reliable information on evaluating the crash performance with the products of road safety facilities built with hot-dip zinc-aluminum-magnesium alloy-coated steel. From the results of the simulations and full-scale crash tests, the impact behaviors evaluated by the three-dimensional crash simulations considering the strain-rate dependency in a constitutive model were similar to those obtained from the full-scale crash test results. The full-scale crash test results met the crashworthiness evaluation criteria; hence, the proposed bridge barrier in this paper is ready for field applications.

Studies on Effect of Dietary Zine on Tissue Trace Elements in the Rat (식이아연(食餌亞鉛)이 흰쥐의 조직중(組織中) 미양금속(微量金屬)에 미치는 영향(影響))

  • Suk, Young-Gun
    • Journal of Nutrition and Health
    • /
    • v.5 no.2
    • /
    • pp.91-103
    • /
    • 1972
  • Zinc is one of the essential trace elements in the living organism for growth and health. The first identified metalloenzyme, carbonic anhydrase, is a zinc compound and several others have been described since. Among zinc deficiency syndromes in animals porcine parakeratosis has been successfully treated with zinc supplements, and in man a syndrome of anemia, hypogonadism, hepatosplenomegaly, and dwarfism, prevalent in parts of Iran and Egypt, has been ascribed to lack of zinc in the diet. Dietary zinc excess in the rat is manifested by a hypochromic, microcytic anemia, poor growth, reduction in liver catalase and cytochrome oxidase. The present study is an attempt to delineate the changes of tissue contents of trace elements, especially of iron, copper and zinc in liver and kidneys of the rats. Weanling albino rats, weighing 60 to 80gm. were used in this experiments. The rats were housed in cages with aluminum floors and received feed and distilled water ad libitum. Animals were divided into three groups, control, low zinc diet and high zinc diet groups. The high zinc diet group was subdivided into 0.5% Zn and 0.7%Zn groups. The supplementary copper or iron was added to the high dietary zinc groups. The animals were sacrificed and the tissues were washed several times with deionized water. The wet digested samples were analyzed by Hitachi Model 207 atomic absorption spectro-photometer for the determination of iron, copper and zinc in the liver and kidney. Hemoglobin level in the blood was measured by cyanmethemoglobin method. The results of this study are as follows: 1) All rats fed high zinc diets and low zinc diets gained less weight than control. Weight gain was not improved by the supplementary copper or iron and both. 2) Hemoglobin concentration was decreased significantly in the rats fed high zinc diets and less in the low zinc diet. Supplementary copper and iron to the higher zinc diet appeared to give some improvement of anemia. 3) The iron contents of the liver and kidneys were significantly decreased in the high zinc groups and the reduction was more significantly in the rats receiving higher zinc diet (0.7%). The supplementary copper caused a further depression of liver iron. On the other hand, the iron, added to the high zinc diet lessoned the severity of the decrease in liver iron and caused kidney iron to be maintained almost at the level found in the rats fed by zinc and supplementary copper diet. 4) High zinc diets did not change copper content of the liver and kidney. Supplementary copper elevated the concentration in the liver and kidney and added iron had no effect on the accumulation of copper in the liver and kidneys. 5) The high zinc diets caused marked increases of zinc content in the liver and kidney. Supplementary iron to the high zinc diet caused increases of zinc contents of liver and kidneys.

  • PDF

A study on the characteristics of phosphating solution for automobile-aluminum-body sheets (차체용 알루미늄합금의 인산염피막 처리액의 특성 관한 연구)

  • Lee, K. H.;Ro, B. H.;Kim, M.
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.4
    • /
    • pp.207-214
    • /
    • 1994
  • In consideration of global environmental protection and fuel saving, aluminum alloy sheets for auto body panels such as hood, fender etc., are expected one of the most promising materials for weight saving of cars. The chemical conversion coating is required to prevent the filiform corrosion occurring on painted aluminum. However the conventional process for the composited material mixed with aluminum and steel is complexs; aluminum part is chromated and assembled to the body, and then the steel body undergoes Zn phosphating. In order to overcome the low productivity due to the complex process and the environmental problem with a conventional process, a simultaneous zinc phosphating process for alsuminum and steel in an assembled condition is demanded. Newly developed phosphate solution has been investigated to characterize the phosphating behavior under various conditions. The optimum conditions of the phosphating solution for the application of the paint treatment derived as follows : about 0.3 for the ratio of Zn to $PO_4$, , 200~500 ppm for the concentration of fluoride ion, and 2.5~4.0 for pH. The concentration of dissolved aluminum ion must be kept below 2--ppm and suitable accelerator is found to be a mixture of 1g/$\ell$ $NO_2\;^-$, and 6g/$\ell$ $NO_3\;^-$.

  • PDF

Effect of Sodium Chloride on Weight Loss of AA1100 Aluminum Alloy and SGACD Zinc coated Steel Lap Joint

  • Maulidin, Achmad;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • This research aims to study an effect of sodium chloride solution concentration on the corrosion rate of AA1100 aluminium alloy and SGACD zinc coated steel lap joint with a test duration of 30 days and a test temperature of $45^{\circ}$. The summarized results are as follows. Increase of the NaCl solution concentration increased the weight loss of Al, corrosion rate of Al, weight loss of Fe and also decreased the corrosion rate of Fe. Increase of the test duration affected to increase the weight loss and corrosion rate of Al and also decrease the weight loss and corrosion rate of Fe. The corrosion that was formed in a lap joint consisted of the uniform corrosion on the surface of the metals and the galvanic corrosion in the lap area of the joint. The maximum weight loss of AA 1100 aluminium and SGACD zinc coated steel that was occurred in the sodium chloride with 3.25% was 2.203% and 3.208%, respectively.. The maximum corrosion rate of AA 1100 aluminium and SGACD zinc coated steel that was occurred in 4.00% and 3.5% sodium chloride solution was 0.156 mm/year and 0.479 mm/year, respectively.

Effects of Sputter Pressure on the Properties of Sputtered ZnO:Al Films Deposited on Plastic Substrate (플라스틱 기판에 증착한 ZnO:Al 박막의 특성에 미치는 스퍼터 압력 효과)

  • Lee, Jae-Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.277-283
    • /
    • 2009
  • In this paper, aluminum doped zinc oxide (ZnO:Al) thin films on plastic substrate such as poly carbonate (PC), polyethylene terephthalate (PET) were prepared by RF magnetron sputtering method for flexible solar cell applications. Effects of the sputter pressure on the structural, electrical and optical properties were investigated. The crystallinity and the degree of the (002) orientation were deteriorated with increasing the sputter pressure. When the sputter pressure was higher, the conductivity of ZnO:Al films was improved because of the high carrier concentration and the Hall mobility. High quality ZnO:Al films with resistivity as low as $1.9{\times}10^{-3}{\Omega}-cm$ and the optical transmittance over 80 % in the visible region have been obtained on PC substrate at 2 mTorr.