• Title/Summary/Keyword: Zinc smelting

Search Result 29, Processing Time 0.025 seconds

Determination of Cadmium and Zinc Contamination Source in Arable Soil in the Vicinity of a Zinc Smelting Factory

  • Hong, Chang-Oh;Gutierrez, Jessie;Lee, Seul-Bi;Lee, Yong-Bok;Yu, Chan;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.204-209
    • /
    • 2007
  • Agricultural area in the vicinity of the ${\triangle}{\triangle}$ smelting factory in Kyeongbuk province, the third largest zinc smelting factory in the world, was contaminated by high concentration of heavy metals. However, the heavy metals source was not yet directly traced and thus, resulted to a conflict between the factory and residents within its vicinity. In order to determine the level of heavy metal contamination in the arable lands located at the north eastern part of the factory, soils were sampled systematically. To find out the major reason for the occurrence of this problem, waters and aerosols were sampled with constant intervals to the upward and downward direction from the factory and were analyzed to find out the heavy metal concentrations. Cadmium (Cd) and zinc (Zn) of the heavy metals were highly accumulated more than the Korean warning criteria (Cd 1.5, Zn 300 mg $kg^{-1}$) with mean values 1.7 and 407 mg $kg^{-1}$, respectively, at the surface soils (0-20 cm), and heavy metal concentration significantly decreased with increasing soil depth In addition, the concentration of both metals slightly decreased with increasing distance from the factory to the surface soils. Cadmium and Zn were detected in the upward stream water with low concentration and concentrations increased significantly in the downstream after passing across the factory. Aerosol samples also showed traces of Cd and Zn which could be attributed to the contamination of the water system and the surface soils. Conclusively, Cd and Zn emitted from the ${\triangle}{\triangle}$ smelting factory moved with the aerosol in the atmosphere and thus, contaminated the agricultural areas and the water system within it vicinity.

Investigation on purification of α-Fe2O3 from zinc smelting iron slag by superconducting HGMS technology

  • Zhang, Peng;Li, Su-qin;Guo, Zi-jie;Zhang, Chang-quan;Yang, Chang-qiao;Han, Shuai-shuai
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.16-19
    • /
    • 2018
  • Comprehensive utilization of zinc smelting iron slag not only solves environmental problems but also creates huge economic benefits. This study was conducted on the enrichment and recovery of ${\alpha}-Fe_2O_3$ from zinc smelting iron slag by superconducting HGMS technology. Several variables such as slurry flow velocity, slag concentration, magnetic field intensity and the amount of dispersing agent were tested in magnetic separation. In the experiments, obtained optimal magnetic separation parameters were 1.60 T of magnetic flux intensity, 600 mL/min of slurry flow velocity of, 15 g/L of slag concentration of, 0.10 g/L of dispersing agent. Under this condition, the content of ${\alpha}-Fe_2O_3$ was increased from 86.22% to 94.39% that can approach the Chinese national standard requirements (A level) of iron oxide red. It was concluded that using superconducting HGMS technology was an effective method for the purification of ${\alpha}-Fe_2O_3$ from zinc smelting iron slag.

EAF Dust Treatment at Miike Smelting CO., LTD.

  • Noda, Shinji;Tatehana, Yoshikazu
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.375-380
    • /
    • 2001
  • MF is a half shaft blast furnace which has been developed at Mitsui Miike Smelter in the 1960’s to treat vertical retort residue. The MF has also been tested for treatment of various recycling materials and wastes. Now various secondaries and wastes (EAF dust, zinc leaching residue, Cu sludge, etc ) are mainly treated. Powder materials are briquetted with reductant before being fed to the furnace. Products are crude zinc oxide, matte, non-hazardous slag and steam. Zinc and lead are recovered in oxide dust, and copper and silver are recovered in matte. The MF can be widely applied to many kinds of materials which contain such non-ferrous metal-valuables. In addition, the improvement in operation and technology has effectively made the unit capacity much larger. The MF now has many advantages for these treatment processes.

  • PDF

Recovery of Zinc and Lead From Steel Dust by Submerged Injection Smelting Process (SUBMERGED INJECTION SMELTING PROCESS에 의한 제강분진중 유가금속의 회수)

  • 문남일;최대규;이용학
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.37-43
    • /
    • 1992
  • The submerged injection smelting process was performed to recover Zn and Pb from steel dust throuth vaporization and to investigate the effect of temperature, slag composition, injection time, gas flow rate, etc. on the recoveries of valuable metals. The results show that vaporation rates of zinc and lead increased at higher temperture and higher moral ratio of ferrous to ferric oxides. In the initial stage of submerged injection of nitrogen gas, the molten slags of the dust have high value of molar ratio of $Fe^{2+}$/$Fe^{3+}$ and hence zinc and lead can be effectively recovered.

  • PDF

Technological Modules for the Recycling of Urban Mines and Non-Ferrous Smelting Processes in Korea (도시광산(都市鑛山) 재자원화(再資源化)기술의 모듈과 한국(韓國)의 비철제련(非鐵製鍊) 프로세스)

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.3-16
    • /
    • 2012
  • In order to review the technological modulus of the recycling of urban mine resources and non-ferrous smelting process in Korea, key point of recycling process, physical separation, non-ferrous smelting process, unit operation for the recycling technology, recycling process of LS-Nikko Copper and Korea Zinc were studied. Finally, metal recycling processes of the typical non-ferrous smelters in Japan such sa DOWA Holdings and JX Holdings were compared with those of LS-Nikko Copper and Korea Zinc.

Emission Characteristics of Mercury in Zn Smelting Process (아연제련시설에서의 수은 배출특성)

  • Park, Jung-Min;Lee, Sang-Bo;Kim, Hyung-Chun;Song, Duk-Jong;Kim, Min-Su;Kim, Min-Jung;Kim, Yong-Hee;Lee, Sang-Hak;Kim, Jong-Chun;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.507-516
    • /
    • 2010
  • Stationary combustion sources such as coal-fired power plants, waste incinerators, industrial manufacturing, etc. are recognized as major sources of mercury emissions. Due to rapid economic growth, zinc production in Korea has increased significantly during the last 30 years. Total zinc production in Korea exceeded 739,000 tons in 2008, and Korea is currently the third largest zinc producing country in the world. Previous studies have revealed that zinc smelting has become one of the largest single sectors of total mercury emissions in the World. However, studies on this sector are very limited, and a large gap in the knowledge regarding emissions from this sector needs to be bridged. In this paper, Hg emission measurements were performed to develop emission factors from zinc smelting process. Stack sampling and analysis were carried out utilizing the Ontario Hydro method and US EPA method 101A. Preliminary data showed that $Hg^0$ concentrations in the flue gas ranged from 4.56 to $9.90\;{\mu}g/m^3$ with an average of $6.40\;{\mu}g/m^3$, Hg(p) concentrations ranged from 0.03 to $0.09\;{\mu}g/m^3$ with an average of $0.04\;{\mu}g/m^3$, and RGM concentrations ranged from 0.23 to $1.17\;{\mu}g/m^3$ with an average of $6.40\;{\mu}g/m^3$. To date, emission factors of 7.5~8.0 g/ton for Europe, North America and Australia, and of 20 or 25 g/ton for Africa, Asia and South America are widely accepted by researchers. In this study, Hg emission factors were estimated using the data measured at the commercial facilities as emissions per ton of zinc product. Emission factors for mercury from zinc smelting pross ranged from 4.32 to 12.96 mg/ton with an average of 8.31 mg/ton. The emission factors that we obtained in this study are relatively low, considering Hg contents in the zinc ores and control technology in use. However, as these values are estimated by limited data of single measurement of each, the emission factor and total emission amount must be updated in future.

The Effect of Genenal Ion for Biological Perchlorate Treatment from Zinc Smelting Inorganic Wastewater (아연제련소 무기성폐수 중 간섭이온이 생물학적 퍼클로레이트 처리에 미치는 영향)

  • Kim, Shin-Jo;Lee, Ki-Yong;Lee, Ki-Cheol;Park, Sang-Min;Kwon, Oh-Sang;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.768-774
    • /
    • 2010
  • This study was conducted to provide a technical solution to treat effectively perchlorate from inorganic wastewater of zinc smelting. Despite an inhibition dissolved inorganic substances in the wastewater discharged from zinc smelting has demonstrated with the activity of microbes, biological treatment technology could reduce perchlorate to a satisfactory level under such stressful conditions. It was found that either conductivity or $SO{_4}^{2-}$ concentration of the wastewater was able to be used as the adequate index and the values were $2,450{\mu}S/cm$ and 1,200 ppm respectively. When $SO{_4}^{2-}$ increased from 0 to 16,000 ppm (conductivity : $428{\rightarrow}24,800{\mu}S/cm$), perchlorate biodegradation rate was reduced due to 1/10 times from 0.0365 to 0.0033/h, however, most of perchlorate was removed under the condition of hydraulic retention time (HRT) at 0.5day and mixed liquor volatile suspended solid (MLVSS) at 2,000 ~ 3,000 ppm.

Cadmium and Zinc Uptake Characteristics of Corn Plant in Arable Soil Contaminated by Smelting Factory Source

  • Hong, Chang-Oh;Gutierrez, Jessie;Oh, Ju-Hwan;Lee, Yong-Bok;Yu, Chan;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • The cadmium (Cd) and zinc (Zn) contamination of soils and cultivated crop plants by zinc smelting activities was studied. In the study area of the vicinity of ${\triangle}{\triangle}$ zinc smelting factory in Korea, soils and corn plants were sampled at corn harvesting stage and analyzed Cd and Zn concentration as well as Cd and Zn fraction and chemical properties in soils. At 600 m radius of studied area, Cd and Zn were highly accumulated in the surface soils (0 - 20 cm) showed greater than the Korean warning criteria (Cd 1.5, Zn 300 mg $kg^{-1}$) with corresponding values 1.7 and 407 mg $kg^{-1}$, respectively. The leaf part gave higher Cd concentration with the corresponding value of 9.5 mg $kg^{-1}$ as compared to the stem and grains pare (1.6 and 0.18 mg $kg^{-1}$), respectively. Higher Zn concentration was also obtained from the leaf part of the corn plant which gave the value of 1,733 mg $kg^{-1}$. The stem and grain part gave corresponding values of 547 and 61 mg $kg^{-1}$. The order of the mean Cd concentration in fractions is F3 (oxidizable fraction) > F2 (reducible fraction) > F4 (residual fraction) > F1 (exchangeable + acidic fraction). A highly positive correlation is observed between F2 and concentration of Cd and Zn in both plant pare, leaf and grain. Highly positive correlations are shown in the pH exchangeable Ca and Mg, and CEC when correlated with Cd and Zn bound to F4 fractions. To reduce Cd and Zn uptake by corn plant in an arable land heavily contaminated with Cd and Zn as affected by smelting factory, an efficient and effective soil management to increase soil pH and CEC is thus recommended.

The Study of Luppe Smelting with Converting Dust and Slag (제강전로 더스트와 슬래그를 이용한 루페제련에 관한 연구)

  • 황용길;이상화;김재일;김연수
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.39-45
    • /
    • 1998
  • We smelted thc pellets made by mixing the distilled carbon from wlISte Lires, LD converter dust and slag with reduction process in the revcrberatory furnace. Thc obtained results are as follows 1) The removal mte of zinc appears above 97% after T reducing the pellets at $1300^{\circ}C$ for Ihr and the zinc content in the residue are 0.1~D.2%. 2) Under the mixing condition of 500 g LD dust. 150-200 g LD slag and 30-50 g distilled carbon of waste lires the removal raho of zinc shows above 95%, while t the 50-60% Fe remains in the residue. 3) After smelting at $1350^{\circ}C$ for 3hrs, the recovery ratio of pig iron reduced from lhe p pellets containing 15-20% LD slag and 4.1-7.2% distilled carbon of waste tires appears in the range of 89.3-92%. 4) Tbe c chemical composition of the recovered pig iron is 1.7%C, O.05%P, 0.05%S and balance Fe. 5) Tbe recovered dust from the d dust collcctor alter finishing the reduction rcaction appears as a crude zinc oxide conLaining 60% zinc.

  • PDF

Reduction Kinetics of Zinc Oxide in EAF Dust (전기로 분진중 아금산화물의 환원속도)

  • Moon Seok Min;Kim Tae Wook;Min Dong Joon
    • Resources Recycling
    • /
    • v.11 no.4
    • /
    • pp.37-43
    • /
    • 2002
  • As the consumption of galvanized steels in cans and automobiles and the quantity of scraps increase, the recycling problems of EAF dust become a important problem. Valuable metals such as Fe, Zn, Pb are of continued interest to metallurgists. To recover the valuable metal and to remove the toxicity of EAF dust, high temperature smelting process is or researching as a pilot scale. The Reduction kinetics of Zn in EAF dust is so important in a view of the economic consideration of the process. In this study, the kinetics behavior of Zn in EAF dust were measured as a point of application in high temperature smelting process. The rate control step in ZnO and franklinite is revealed to be chemical reaction on the reaction surface.