• Title/Summary/Keyword: Zinc removal

Search Result 152, Processing Time 0.019 seconds

Enhanced alizarin removal from aqueous solutions using zinc Oxide/Nickel Oxide nano-composite

  • Basma E. Jasim;Ali J. A. Al-Sarray;Rasha M. Dadoosh
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.39-46
    • /
    • 2024
  • Alizarin dye, a persistent and hazardous contaminant in aquatic environments, presents a pressing environmental concern. In the quest for efficient removal methods, adsorption has emerged as a versatile and sustainable approach. This study focuses on the development and application of Zinc Oxide/Nickel Oxide (ZnO/NiO) nano-composites as adsorbents for alizarin dye removal. These semiconducting metal oxide nano-composites exhibit synergistic properties, offering enhanced adsorption capabilities. Key parameters affecting alizarin removal, such as contact time, adsorbent dosage, pH, and temperature, were systematically investigated. Notably, the ZnO/NiO nano-composite demonstrated superior performance, with a maximum alizarin removal percentage of 76.9 % at pH 6. The adsorption process followed a monolayer pattern, as suggested by the Langmuir model. The pseudo-second-order kinetics model provided a good fit to the experimental data. Thermodynamic analysis indicated that the process is endothermic and thermodynamically favorable. These findings underscore the potential of ZnO/NiO nano-composites as effective and sustainable adsorbents for alizarin dye removal, with promising applications in wastewater treatment and environmental remediation.

THE EFFECT OF VARIOUS CEMENTS ON THE TENSILE STRENGTH OF A POST AND DIFFICULTIES OF ULTRASONIC POST REMOVAL (시멘트의 종류에 따른 포스트의 인장강도 및 제거의 난이도에 관한 연구)

  • Park, Jeong-Won;Roh, Byoung-Duck;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.181-192
    • /
    • 1997
  • The difficulty of endodontic retreatment depends on various factors and it is affected by retention of post. In this experiment, root canal therapy was done in extracted human teeth and cut into 10mm length from the root apex, and then cemented by zinc phosphate cement, Vitremer$^{(R)}$(glass ionomer) luting cement and Panavia 21$^{(R)}$(resin cement). Post preparation was done by #4 Parapost drill at 6mm length and cement was inserted by lentulo spiral. After 24 hours, tensile bond strength, post removal time was measured after the ultrasonic application and the separation site was measured. The following results were obtained. 1. In measuring tensile bond strength, there is no statistical difference between zinc phosphate cement and Panavia 21$^{(R)}$, but Vitremer$^{(R)}$ showed lower value compared with those two cements. (p<0.001) 2. When the post removal time was measured after ultrasonic application, significant different value in order of Panavia 21$^{(R)}$, zinc phosphate cement and Vitremer$^{(R)}$ was shown. (p<0.001) 3. As a result of examining the separating site of each cement, all 16 of zinc phosphate cement group showed the fracture site between cement and post, Vitremer$^{(R)}$ was 13/16, and Panavia 2$^{(R)}$ was 8/16. In case of tooth restoration using Parapost, the use of Panavia 21 showed good retention property than Vitremer$^{(R)}$, but when retreatment is needed the difficulty of post removal will be increased.

  • PDF

A Study on the Removal of Nitrate Nitrogen by Redox Reaction of Zinc in Acidic Atmosphere (산 처리를 통한 아연의 산화 환원 반응을 이용한 질산성 질소 제거에 관한 연구)

  • Lee, Soo Jeong;Kim, Jong Hwa;Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.217-224
    • /
    • 2017
  • This is a study on the removal of nitrate nitrogen from wastewater by oxidation and reduction reaction of zinc in an acidic atmosphere. The optimum removal rate of nitrate nitrogen and the optimum pH were studied by controlling the amount of zinc and sulfamic acid. The oxidation efficiency was higher at pH 2.0 in the range of pH 2.0 ~ 4.0 because the reaction occurred more strongly in strong acidic atmosphere. It is advantageous to reduce the nitrate ion to the final nitrogen gas by adding the sulfamic acid to the sulfurous acid because it consumes less $H^+$ ion than when the sulfamic acid is not present. According to the same amount of zinc, nitrate nitrogen was removed by 46.0% while sulfamic acid was not added, whereas nitrite nitrogen was removed by 93.0% by adding sulfamic acid. In addition, In this experiment, zinc was prepared in powder form and its reactivity was larger than that of other common zinc metal, so the removal efficiency was very high, about 80.0%, within one minute after the reaction.

Numerical Simulation of an Impinging Jet with Various Nozzle-to-strip Distances in the Air-knife System

  • So, Hong-Yun;Yoon, Hyun-Gi;Chung, Myung-Kyoon
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.239-246
    • /
    • 2010
  • When galvanized steel strip is produced through a continuous hot-dip galvanizing process, the thickness of the adhered zinc film is controlled by impinging a thin plane nitrogen gas jet. The thickness of the zinc film is generally affected by impinging pressure distribution, its gradient and shearing stress at the steel strip. These factors are influenced by static pressure of gas spraying at air knife nozzle, a nozzle-to-strip distance and strip and a geometric shape of the air knife, as well. At industries, galvanized steel strip is produced by changing static pressure of gas and a distance between the air knife nozzle and strip based on experimental values but remaining a geometric shape of nozzle. Splashing and check-mark strain can generally occur when a distance between the air knife nozzle and strip is too short, while ability of zinc removal can lower due to pressure loss of impinging jet when a distance between the air knife nozzle and strip is too long. In present study, buckling of the jet and change of static pressure are observed by analyzing flow characteristics of the impinging jet. The distance from the nozzle exit to the strip varies from 6 mm to 16 mm by an increment of 2 mm. Moreover, final coating thickness with change of a distance between the air knife nozzle and strip is compared with each case. An ability of zinc removal with the various distances is predicted by numerically calculating the final coating thickness.

Development of Porous Sorbents for Removal of Hydrogen Sulfide from Hot Coal Gases III. Study on Ferrite-type adsorbent for the Removal of Hydrogen Sulfide

  • Kim, Jong-Saeng;Lee, Young-Soo;Lee, Bok-Jae;Yoo, Kyong-Ok
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.1
    • /
    • pp.39-49
    • /
    • 1991
  • 고온에서 황화수소(H$_{2}$S)를 제거하기 위한 흡착제를 개발할 목적으로 ZnO에 $Fe_{2}O_{3}$를 5~50 atomic %까지 첨가시켜 제조한 다공성 흡착제와 황화수소와의 반응(sulfidation)을 thermogravimetric analyzer (Shimadzu DT-30)로 수행하였으며, 고정층세서 zinc ferrite 흡착제의 흡착능을 측정하였다. 반응온도는723$^{\circ}$K~973$^{\circ}$K범위이며, 반응기체는 황화수소(2vol.%)와 질소와 혼합기체로서 total gas flow rate는 200ml/min으로 고정시켰다. Grain Model을 사용하여 실험데이터를 분석한 결과 전화율이 낮을 때 zinc ferrite와 황화수소 반응의 율속단계는 화학반응이었고 황화수소 농도에 대해 1차 반응이었다. 실험한 흡착제 중 10 atomic %의 $Fe_{2}O_{3}$를 첨가하여 제조한 zinc ferrite형 흡착제가 반응속도, 흡착능, 그리고 재생성면에서 우수한 흡착제로 밝혀졌다.

  • PDF

Continuous removal of heavy metals by coupling a microbial fuel cell and a microbial electrolytic cell

  • Xie, Guo R.;Choi, Chan S.;Lim, Bong S.;Chu, Shao X.
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.283-294
    • /
    • 2020
  • This work aims at studying the feasibility of continuous removal of mixed heavy metal ions from simulated zinc plating wastewaters by coupling a microbial fuel cell and a microbial electrolysis cell in batch and continuous modes. The discharging voltage of MFC increased initially from 0.4621 ± 0.0005 V to 0.4864 ± 0.0006 V as the initial concentration of Cr6+ increased from 10 ppm to 60 ppm. Almost complete removal of Cr6+ and low removal of Cu2+ occurred in MFC of the MFC-MEC-coupled system after 8 hours under the batch mode; removal efficiencies (REs) of Cr6+ and Cu2+ were 99.76% and 30.49%. After the same reaction time, REs of nickel and zinc ions were 55.15% and 76.21% in its MEC. Cu2+, Ni2+, and Zn2+ removal efficiencies of 54.98%, 30.63%, 55.04%, and 75.35% were achieved in the effluent within optimum HRT of 2 hours under the continuous mode. The incomplete removal of Cu2+, Ni2+ and Zn2+ ions in the effluent was due to the fact that the Cr6+ was almost completely consumed at the end of MFC reaction. After HRT of 12 hours, at the different sampling locations, Cr6+ and Cu2+ removal efficiencies in the cathodic chamber of MFC were 89.95% and 34.69%, respectively. 94.58%, 33.95%, 56.57%, and 75.76% were achieved for Cr6+, Cu2+, Ni2+ and Zn2+ in the cathodic chamber of MEC. It can be concluded that those metal ions can be removed completely by repeatedly passing high concentration of Cr6+ through the cathode chamber of MFC of the MFC-MEC-coupled system.

A Study on Preparation and Reactivity of Zinc Titanate Sorbents for H2S Removal (아연-티타늄 복합산화물 탈황제의 제조 및 반응특성 연구)

  • Kim, Ki-Seok;Park, No-Kuk;Lee, Tae-Jin
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.122-131
    • /
    • 1997
  • Zinc titanate sorbents for $H_2S$ removal were prepared and their reactivities were studied for high temperature desulfurization of coal gas. Sulfidation of zinc titanates by $H_2S$ sorption was conducted in a packed-bed tubular flow reactor at the temperature range of $550{\sim}750^{\circ}C$, and the results reveal that $650^{\circ}C$ was the optimal sulfidation temperature with respect to desulfurization efficiency and zinc loss. The structural change of sorbent particle was investigated by SEM analysis for the forbents sulfided at $650^{\circ}C$ and subsequently regenerated at $750^{\circ}C$. The stability of desulfurization capability as well as the mechanical stability of the zinc titanates was studied by means of the successive cycles of sulfidation-regeneration of sorbents, and the sorbent samples taken after the 10th cycle were characterized using BET, XRD, and SEM/EDX analyses. Zinc titanate sorbents exhibited nearly constant desulfurization capability in the successive cycle operation.

  • PDF

A Study on Preparation and Reactivity of Zinc-based Sorbents for H2S Removal (H2S제거를 위한 아연계 탈황제 제조 및 반응특성 연구)

  • Lee, Chang Min;Yoon, Yea Il;Kim, Sung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.183-189
    • /
    • 1999
  • Zinc-based sorbents for $H_2S$ removal were prepared. The reactivity of sorbents was investigated by the successive cycles of sulfidation-regeneration at $650^{\circ}C$ in a fixed bed reactor. The desulfurization sorbents were prepared with granulation method to produce a spherical pellet with good attrition resistance. The fresh and reacted sorbents were characterized by X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS) and the characteristics of sorbents on calcination conditons were analysed by Mercury Porosimetery and BET. The reactivity of sorbents decreased as the number of sulfidation-regeneration cycle increased. It is due to the zinc loss and the increase of the diffusion resistance by sintering, cracking and spalling of sorbents at the high temperature.

  • PDF

A Study on the Removal Efficiency of Heavy Metals in Daenam Mine Agricultural Soil Using Heavy metal Properties by Physical separation (대남광산 농경지 토양 내 중금속 특성에 따른 물리적 선별 처리효율에 관한 연구)

  • ParK, Chan Oh;Hong, Dong-Ho;Lee, Jai-Young;Lee, Young Jae;Lee, Jin-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.46-55
    • /
    • 2013
  • The main objective was to evaluate the efficiencies of different separation techniques, such as gravity separation, magnetic separation, and aerial separation. Zinc and cadmium removal efficiencies by gravity separation and magnetic separation were 28.3~29.3% and 19.1%, respectively, and were higher than the efficiency obtained by aerial separation. Results showed that the combination of gravity separation and magnetic separation in series which was to maximize the removal efficiencies gave removal efficiency of 21.5~38.7% for zinc and 22.1~23.4% for cadmium. The mass of soil meeting the regulation standards for zinc and cadmium after retrieval from the combined separation process accounted for approximately 80% of the treated soil that would be reusable without the pre-treatment procedure as the neutralization process using in the soil washing method. Physical separation techniques utilizing heavy metal properties are the alternative method to remediate heavy-metal contaminated soils in environmental and economic aspects.

Polymer-supported Zinc Tetrahalide Catalysts for the Coupling Reactions of CO2 and Epoxides

  • Lee, Bo-Ra;Ko, Nan-Hee;Ahn, Byoung-Sung;Cheong, Min-Serk;Kim, Hoon-Sik;Lee, Je-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2025-2028
    • /
    • 2007
  • Homogeneous zinc tetrahalide complexes, highly active catalysts for the coupling reactions of alkylene oxide and CO2 produce alkylene carbonates, were heterogenized due to their tendency to decompose produced alkylene carbonates during the distillation process. Heterogenization of homogeneous zinc tetrahalide complexes was achieved by polymerizing 1-alkyl-3-vinylimidazolium zinc tetrahalides. These polymerized zinc tetrahalide catalysts displayed similar activities to their corresponding monomeric analogues for the coupling reactions of carbon dioxide with ethylene oxide (EO) or propylene oxide (PO) to produce ethylene carbonate (EC) or propylene carbonate (PC). TGA studies showed that the polymer-supported zinc tetrahalide catalysts are thermally stable up to 320 oC. The catalyst recycle test showed that the supported catalysts could be reused over six times. After removal of the polymer-supported catalyst through a simple filtration, EC was able to be isolated without decomposition.