• Title/Summary/Keyword: Zinc recovery

Search Result 107, Processing Time 0.023 seconds

Zinc Accumulation in the Cell of Zinc-Tolerant Bacteria, Pseudomonas chlororaphis, and Recovery of Zinc from the Cells Accumulating Zinc (아연 내성균의 균체내 아연 축적특성 및 균체내 축적된 아연의 회수)

  • 조주식;한문규
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.317-327
    • /
    • 1996
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Zinc-tolerant microorganism, such as Pseudomonas chlororaphis which possessed the ability to accumulate zinc, was isolated from industrial wastewaters polluted with various heavy metals. The characteristics of zinc accumulation in the cells, recovery of the zinc from the cells accumulating zinc, were investigated. Removal rate of zinc from the solution containing 100 mall of Zinc by zinc-tolerant microorganism was more than 90% at 48 hours after inoiulation of the microorganisms. A large number of the electron-dense granules were found mainly on thIn cell wall and membrane fractions, when determined by transmission electron microscope. Energy dispersive X- ray spectroscopy revealed that the electron-dense granules were zinc complex with the substances binding Heavy metals. The zinc accumulated into cells was not desorbed by distilled water, but more than 80% of the zinc accumulated was desorbed by 0.1M-EDTA. The residues of the cells after combustion at 55$0^{\circ}C$ amounted to about 21% of the dry weight of the cells. EDS analysis showed that the residues were comparatively pure zinc compounds containing more than 79% of zinc.

  • PDF

Recycling of rayon industry effluent for the recovery and separation of Zn/Ca using Thiophosphinic extractant

  • Jha, M.K.;Kumar, V.;Bagchi, D.;Singh, R.J.;Lee, Jae-Chun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.78-85
    • /
    • 2006
  • In textile industries, waste effluent containing zinc is generated during the manufacture of rayon yarn from the wood pulp or cotton linters. Due to the strict environmental regulations and the presence of toxic metallic and other constituents, the discharge of industrial effluents in the sewage or disposal of solid sludge as landfill is restricted. Before recycling of zinc as zinc sulphate solution to the spinning-bath of the rayon manufacturing plant the zinc sulphate solution must be free from calcium, which is deleterious to the process as gypsum precipitates with the increase in concentration and forms scale in the bath. In the present work an attempt has been made to develop a process following solvent extraction technique using thiophosphinic extractants, Cyanex 272 and 302 modified with isodecanol and diluted in kerosene to recover zinc from rayon effluent. Various process parameters viz. extraction of zinc from different concentration of solution, distribution ratio, selective extraction, O/A ratio on extraction and stripping from the loaded organic, complex formation in the organic phase etc. have been studied to see the feasibility of the process. The extractant Cyanex 302 has been found selective for the recovery of 99.99% of zinc from the effluent above equilibrium pH 3.4 maintaining the O/A ratio of 1/30 leaving all the calcium in the raffinate. It selectively extracted zinc in the form of complex $[R_{2}Zn.3RH]_{org}$ and retained all the calcium in the aqueous raffinate. The zinc from the loaded Cyanex 302 can be stripped with 10% sulphuric acid at even O/A ratio of 10 without affecting the stripping efficiency. The stripped solution thus obtained could be recycled in the spinning bath of the rayon plant. The raffinate obtained after the recovery of zinc could be disposed safely without affacting environment.

  • PDF

Effects of Copper, Zinc and Cadmium on the Recovery Pattern of Aryl Sulfotransferase IV Activity in Rats fed 2-Acetylaminofluorene Diet

  • Chung Keun Hee;Ringel David P.;Shin Kyung Ok
    • Nutritional Sciences
    • /
    • v.9 no.1
    • /
    • pp.29-34
    • /
    • 2006
  • Purified rat liver aryl sulfotransferase IV (AST IV) was found to be inhibited in vitro by zinc, copper, cadmium and terbium. Among these four elements, zinc, copper and cadmium were all strongly inhibitory to the AST IV activity at very low concentrations (2.5 $\mu$M to 0.025 $\mu$M). In rat liver cytosol, zinc, copper and cadmium at 25 $\mu$M to 0.025 $\mu$M also decreased the AST IV activity to $50\%$ of the controls. In order to assess the possible effects of these metals on the AST IV activity recovery pattern in vivo, studies on the relationship between these minerals and dietary 2-acetylaminofluorene were conducted. Total of forty rats were fed one of five diets for 6 weeks: diet 1, Control diet plus 2-acetlyaminofluorene ($0.05\%$); diet 2, zinc-deficient diet plus 2-acetlyaminofluorene; diet 3, zinc-supplement diet plus 2-acetylaminofluorene; diet 4, copper-supplement diet plus 2-acetylaminofluorene; diet 5, cadmium-supplement diet plus 2-acetylaminofluorene. Half of the rats from each diet were changed to individual diet after 3 weeks of 2-acetylaminofluorene feeding. Placement of rats on the control diet following one cycle of 2-acetylaminofluorene feeding of 3 weeks without 2-acetylaminofluorene resulted in nearly full recovery of AST IV activity within 3 or 4 weeks. However, the rats fed diets that supplemented with zinc, copper or cadmium without 2-acetylaminofluorene showed a new pattern of lowered AST IV activity as early as the first cycle. Also, lowering in cytosolic AST IV contents was appeared in the livers from the rats, following one cycle of 2-acetylaminofluorene feeding of 3 weeks, fed one of the diets that supplemented with copper, cadmium or zinc without 2-acetylaminofluorene for ensuing 3 weeks.

A Study on the Recovery of Zinc ion from Metal-Plating Wastewater by Using Spent Catalyst (酸化鐵 廢觸媒에 의한 도금폐수중 아연이온 回收에 관한 基礎硏究)

  • 이효숙;오영순;이우철
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.23-28
    • /
    • 2001
  • Zinc ion could be recovered from metal plating wastewater with the spent iron oxide catalyst which was used in the plant of Styrene Monomer(SM) production. The zinc was recovered more than 98.7% at higher than pH 2.0. The saturation magnetization of the spent catalyst is enough high as 59.4 emu/g to apply in the solid-liquid separation after treating the wastewater. The mechanism of zinc recovery with the iron oxide catalyst could be a electro-chemical adsorption at pH 3.0~8.5, and a precipitation as $Zn(OH)_2$ at higher than pH 8.5.

  • PDF

Recovery of Zinc in Spent Pickling Solution with Oxalic Acid

  • Lee, Kyung-Ran;Kim, Jeongsook;Jang, Jeong-Gook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.785-790
    • /
    • 2017
  • To collect zinc, Fe and Zn in spent pickling solution were extracted by using TBP (tributyl phosphate), and Zn was recovered from extracted solution to zinc oxalate particles by oxalic acid solution. The reusability of TBP solvent was also tested. The distribution coefficient of Zn was not affected by the concentration of Fe in spent pickling solution, almost constant with the values of 7.12~9.31 when extracted by TBP solvent. It was found that the extraction capacity of TBP solvent for Zn is higher than that for Fe. The extraction efficiency of Zn was higher than 95%, while most of Fe was left in aqueous phase. After the recovery, the used TBP solvent could be repeatedly reused for the extraction of Zn up to eight times. XRD analysis showed that zinc oxalate ($ZnC_2O_4$ $2H_2O$) was formed from the reaction of Zn-TBP and oxalic acid. From the results of SEM analysis, the formation of zinc oxalate particle was strongly affected by the concentration of oxalic acid. In summary, Zn in spent pickling solution was successfully separated and recovered with TBP solvent and oxalic acid solution, respectively.

Recovery of Zine sulfate from zine sulfate waste water contain organic compound (유기물이 포함된 황산아연폐수로부터 황산아연의 회수)

  • Yoon, Guk-Joung;Lee, Tack-Hyuck
    • The Journal of Natural Sciences
    • /
    • v.14 no.2
    • /
    • pp.33-40
    • /
    • 2004
  • The eliminating of organic compound is essential process of the recovery of zinc sulfate from zinc sulfate waste water contained organic compound. The ozone oxidation and adsorption treatment is good for eliminating of organic compound in waste water. The zinc oxide treated an excess of sulfuric acid for zinc sulfate. We got zinc sulfate 740g from water 1kg.

  • PDF

Basic Studies on the Recovery of Zinc Metal from Wastewater by Cyclic Voltammetry (循環走査법에 의한 廢水로부터 亞鉛 回收에 관한 基礎 硏究)

  • 김진화;김동수
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.29-36
    • /
    • 2001
  • Cyclic voltammetry has been applied in the basic studies for the treatment and recovery of heavy metal component contained in wastewater by electrochemical reduction. The electrochemical behaviors of zinc ion for zinc metal electrode and carbon elec-trode were characterized by voltammograms and it was showed that zinc ions were reduced to metallic form below -0.76 V vs SHE. The change in the features of crystalline form of metallic zinc upon oxidation and reduction reaction was observed by X-ray diffraction method and the Am analysis verified that zinc ions were reduced to metal on copper plate. The results of this study were regarded to be important and meaningful in the treatment of heavy metal containing wastewater and, as a result, in the obtainment of metallic product by electrochemical method.

  • PDF

Recovery of Gallium and Indium from Zinc Residues by Acid Leaching (산침출에 의한 아연제련잔사로부터 갈륨 및 인디움의 회수)

  • 이화영;김성규;오종기
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.22-26
    • /
    • 1993
  • The flowsheet for the recovery of gallium and indium from zinc residues has been established based on the sulfuric acid treatment. In comparison with the alkali treatment, the method proposed in this work allowed the recovery of indium together with gallium. The majority of iron contained in leach liquor could be removed through the two-stage neutrallization under oxidative or reductive atmosphere. Crude gallium and indium could be obtained through the alkali and/or acid leaching of the products generated from the above treatment. In addition, cementation of indium with zinc powders could also be used for the concentration of it from weak acid solutions.

  • PDF

Recovery of Gallium from Zinc Smelting Residues by Alkali Leaching (아연제련잔사의 알칼리 침출에 의한 갈륨의 회수)

  • 김성규;이화영;오종기
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.22-28
    • /
    • 2000
  • A study on the recovery of gallium from zinc residues is carried out by alkali leaching using NaOH. The results show that in case of alkali leaching of zinc residues, Zn, K and Si are mainly leached out and Fe and other base metals are scarcely leached out, which results in that gallium is easily recovered by solvent extraction. The leaching efficiency of gallium increases with increasing alkali concentration and solid density. Especially, alkali consumption is considerably reduced by washing the zinc residues with water before leaching in order to eleminate the soluble zinc compounds. The gallium from zinc residues is found to be leached out with a recovery of 80% or higher for 2hrs leaching with 1~1.25 M/L NaOH solution and solid density 333 g/L at $25^{\circ}C$.

  • PDF

Effect of Ultrasound Irradiation during Cementation Process for Recovery of Iridium (이리듐 회수를 위한 시멘테이션 공정 중 초음파 조사의 영향)

  • Kim, Seunghyun;Kim, Young-Jin;Seo, Jun-Hyung;Cho, Jin-Sang;Cho, Kye-Hong;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.61-67
    • /
    • 2021
  • This work investigated the cementation of iridium from iridium-containing hydrochloric acid leachate. Zinc powder was used as the reducing agent, and the effects of the stoichiometric ratio of Zn/Ir, initial Ir concentration, initial pH, reaction time, and ultrasound irradiation on iridium recovery were investigated. When only the stirrer was used for cementation, the iridium recovery increased with the addition amount of zinc, and the recovery of about 70% at 40 times the stoichiometric ratio of Zn/Ir. In contrast, when employing ultrasonic irradiation with stirring, the recovery of iridium decreased at 20 times or less the stoichiometric amount of zinc. The recovery of iridium increased at 40 times the stoichiometric ratio of Zn/Ir. This result may be due to the ionization of zinc and re-dissolution of iridium during the ultrasound irradiation treatment. When a combination of ultrasonic irradiation and stirring was used for cementation, the iridium recovery increased by more than 27% compared to that when using only the stirrer. It was possible to recover 99% of iridium under the following conditions: reaction time, 60 min; initial pH, 0.01; volume of leachate, 100 mL; 1770 ppm Ir, 40 times the stoichiometric ratio of Zn/Ir.