• Title/Summary/Keyword: Zinc concentration

Search Result 830, Processing Time 0.023 seconds

EXPERIMENTAL STUDY ON THE EFFECT OF FORMOCRESOL TO THE PULP TISSUE (Formocresol이 치수조직(齒髓組織)에 미치는 영향(影響)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Duk-Sang
    • Restorative Dentistry and Endodontics
    • /
    • v.6 no.1
    • /
    • pp.17-25
    • /
    • 1980
  • The purpose of this study was to evaluate the pulpal response against calcium hydroxide and zinc oxide containing various concentration of formocresol (0.1, 0.5, 1, 5, 10, 20 and 30%). The experiment was performed on dog's teeth (75 teeth from 5 dogs: Table 1.) and the teeth were routinly treated in laboratory procedures. Followings are the results obtained through microscopical examination. 1. In zinc oxide group, intlammatory reaction was severe in low concentrated formocresol and the (higher the concentration of formocresol the milder the inflammatory reaction was more evident. 2. In zinc oxide group, inflammatory change was milder at 3 weeks than 1 week, and proliferation of young connective tissue was seen at 3 weeks. 3. In calcium hydroxide group, inflammatory change in relation to the concentration of formocresol was not noticeable. 4. In calcium hydroxide group, repair process with decreased inflammatory reaction and fibrosis, and dentin bridge like layer was found at 3 weeks.

  • PDF

Dissolution of Antheraea pernyi Silk Fiber and Structure of Regenerated Fibroin from Zinc Nitrate Solution (질산아연에 의한 작잠견피브로인의 용해와 특성)

  • 권해용;이광길;여주홍;박영환
    • Journal of Sericultural and Entomological Science
    • /
    • v.45 no.2
    • /
    • pp.121-125
    • /
    • 2003
  • Dissolution of Antheraea pernyi silk fiber was carried out in a zinc nitrate 6 hydrate (Zn(NO$_3$)$_2$ㆍ6$H_2O$) solution with various dissolving conditions. The solubility was significantly dependent on the concentration of zinc nitrate, dissolving temperature and time. Regenerated A. pernyi silk fibroin powder was obtained through dialysis process to remove chaotropic salt. FTIR and X-ray diffractometer showed that the conformation of regenerated A. pernyi silk powder was sheet structure.

Excess zinc uptake in Paronychiurus kimi(Collembola) induces toxic effects at the individual and population levels

  • Son, Jino;Lee, Yun-Sik;Kim, Yongeun;Wee, June;Ko, Euna;Cho, Kijong
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.3
    • /
    • pp.335-342
    • /
    • 2019
  • The purpose of this study was to investigate the toxic effects of zinc in collembolan Paronychiurus kimi at the individual (survival and juvenile production) and population (population growth and age structure) levels after 28 days of exposure in artificially spiked soil. These toxic effects were interpreted in conjunction with the internal zinc concentrations in P. kimi. The EC50 value for juvenile production based on the total zinc concentration was 457 mg Zn kg-1 dry soil, while the LC50 value for adult survival and ri=0 value for population growth were within the same order of magnitude (2,623 and 1,637 mg Zn kg-1 dry soil, respectively). Significant differences in adult survival, juvenile production, and population growth compared with the control group were found at concentrations of 1,500, 375, and 375 mg Zn kg-1 dry or higher, respectively, whereas significant differences in the age structure, determined by the proportion of each age group in the population, were observed in all treatment groups. It appeared that the internal zinc level in P. kimi was regulated to some extent at soil zinc concentrations of ≤375 mg Zn kg-1 dry soil, but not at high soil zinc concentrations. These results indicate that, despite zinc being regulated by P. kimi, excess zinc exceeding the regulatory capacity of P. kimi can trigger changes in the responses at the individual and population levels. Given that population dynamics are affected not only by individual level but also by population level endpoints, it is concluded that the toxic effects of pollutants should be assessed at various levels.

Determination of Cadmium and Zinc Contamination Source in Arable Soil in the Vicinity of a Zinc Smelting Factory

  • Hong, Chang-Oh;Gutierrez, Jessie;Lee, Seul-Bi;Lee, Yong-Bok;Yu, Chan;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.204-209
    • /
    • 2007
  • Agricultural area in the vicinity of the ${\triangle}{\triangle}$ smelting factory in Kyeongbuk province, the third largest zinc smelting factory in the world, was contaminated by high concentration of heavy metals. However, the heavy metals source was not yet directly traced and thus, resulted to a conflict between the factory and residents within its vicinity. In order to determine the level of heavy metal contamination in the arable lands located at the north eastern part of the factory, soils were sampled systematically. To find out the major reason for the occurrence of this problem, waters and aerosols were sampled with constant intervals to the upward and downward direction from the factory and were analyzed to find out the heavy metal concentrations. Cadmium (Cd) and zinc (Zn) of the heavy metals were highly accumulated more than the Korean warning criteria (Cd 1.5, Zn 300 mg $kg^{-1}$) with mean values 1.7 and 407 mg $kg^{-1}$, respectively, at the surface soils (0-20 cm), and heavy metal concentration significantly decreased with increasing soil depth In addition, the concentration of both metals slightly decreased with increasing distance from the factory to the surface soils. Cadmium and Zn were detected in the upward stream water with low concentration and concentrations increased significantly in the downstream after passing across the factory. Aerosol samples also showed traces of Cd and Zn which could be attributed to the contamination of the water system and the surface soils. Conclusively, Cd and Zn emitted from the ${\triangle}{\triangle}$ smelting factory moved with the aerosol in the atmosphere and thus, contaminated the agricultural areas and the water system within it vicinity.

Effects of Electrolyte Concentration on Electrochemical Properties of Zinc-Air Batteries (전해질 농도에 따른 아연-공기 전지의 전기화학적 특성)

  • Han, Ji Woo;Jo, Yong Nam
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.798-803
    • /
    • 2019
  • The self-discharge behavior of zinc-air batteries is a critical issue induced by corrosion and hydrogen evolution reaction (HER) of zinc anode. The corrosion reaction and HER can be controlled by a gelling agent and concentration of potassium hydroxide (KOH) solution. Various concentrations of KOH solution and polyacrylic acid have been used for gel electrolyte. The electrolyte solution is prepared with different concentrations of KOH (6 M, 7 M, 8 M, 9 M). Among studied materials, the cell assembled with 6 M KOH gel electrolyte exhibits the highest specific discharge capacity and poor capacity retention. Whereas, 9 M KOH gel electrolyte shows high capacity retention. However, a large amount of hydrogen gas is evolved with 9 M KOH solution. In general, the increase in concentration is related to ionic conductivity. At concentrations above 7 M, the viscosity increases and the conductivity decreases. As a result, compared to other studied materials, 7 M KOH gel electrolyte is suitable for Zn-air batteries because of its higher capacity retention (92.00 %) and specific discharge capacity (351.80 mAh/g) after 6 hr storage.

Effect of Fe(NO3)2 Concentration on Electrochemical Behavior of SCM430 in Zinc Phosphate Conversion Coating Solution (아연계 인산염 피막용액에서 Fe(NO3)2 농도가 SCM430 합금의 전기화학적 거동에 미치는 영향)

  • Kwon, Duyoung;Song, Pung-Keun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.233-238
    • /
    • 2019
  • The formation behavior of zinc phosphate conversion coating (ZPCC) on SCM430 alloy was investigated in 25 vol.% of 1M ZnO + 170 ml/L solution containing various $Fe(NO_3)_2$ concentrations, using open-circuit potential(OCP), electrochemical impedance spectroscopy(EIS), cyclic polarization(CP) curve and tape peel test. OCP of SCM430 alloy and corrosion current density increased with increasing $Fe(NO_3)_3$ concentration. Resistance of films formed on SCM430 alloy by chemical conversion treatment decreased with increasing $Fe(NO_3)_3$ concentration. Color and adhesion of chemical conversion coatings became darker and worse, respectively, with increasing $Fe(NO_3)_3$ concentration. It is concluded that addition of $Fe(NO_3)_3$ into a zinc phosphating bath leads to faster reaction to form porous surface coatings with poor adhesion and corrosion resistance.

Adsorption of Organic Chemical by Coconut Activated Carbon treated with Zinc Salt (아연염으로 표면처리한 활성탄에 의한 수중 유기화합물의 흡착)

  • 김영규;한진수
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • The objectives of this study was to find the effect of zinc salt treated with coconut activated carbon and the effect of humic substance. The bottle- Point technique was used in determining the Freundlich isotherm equation. The adsorptive capacity of granular activated carbon was reduced when humic substance are present. Coconut activated carbon was coated with 0.0001 N zinc chloride decreased the BET surface area but increased the adsorptive capacity more than coconut activated carbon not coated with zinc chloride. The adsorptive capacity of TCE in coconut activated carbon coated with higher concentration of zinc chloride was reduced but increased in the solution containing humic substance when the coconut activated carbon was coated with 0.01 N- zinc chloride. The zinc salt coated with coconut activated carbon did not Increase the adsorptive velocity of coconut activated carbon.

  • PDF

Recovery of Zinc in Spent Pickling Solution with Oxalic Acid

  • Lee, Kyung-Ran;Kim, Jeongsook;Jang, Jeong-Gook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.785-790
    • /
    • 2017
  • To collect zinc, Fe and Zn in spent pickling solution were extracted by using TBP (tributyl phosphate), and Zn was recovered from extracted solution to zinc oxalate particles by oxalic acid solution. The reusability of TBP solvent was also tested. The distribution coefficient of Zn was not affected by the concentration of Fe in spent pickling solution, almost constant with the values of 7.12~9.31 when extracted by TBP solvent. It was found that the extraction capacity of TBP solvent for Zn is higher than that for Fe. The extraction efficiency of Zn was higher than 95%, while most of Fe was left in aqueous phase. After the recovery, the used TBP solvent could be repeatedly reused for the extraction of Zn up to eight times. XRD analysis showed that zinc oxalate ($ZnC_2O_4$ $2H_2O$) was formed from the reaction of Zn-TBP and oxalic acid. From the results of SEM analysis, the formation of zinc oxalate particle was strongly affected by the concentration of oxalic acid. In summary, Zn in spent pickling solution was successfully separated and recovered with TBP solvent and oxalic acid solution, respectively.

Effect of Sodium Chloride on Weight Loss of AA1100 Aluminum Alloy and SGACD Zinc coated Steel Lap Joint

  • Maulidin, Achmad;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • This research aims to study an effect of sodium chloride solution concentration on the corrosion rate of AA1100 aluminium alloy and SGACD zinc coated steel lap joint with a test duration of 30 days and a test temperature of $45^{\circ}$. The summarized results are as follows. Increase of the NaCl solution concentration increased the weight loss of Al, corrosion rate of Al, weight loss of Fe and also decreased the corrosion rate of Fe. Increase of the test duration affected to increase the weight loss and corrosion rate of Al and also decrease the weight loss and corrosion rate of Fe. The corrosion that was formed in a lap joint consisted of the uniform corrosion on the surface of the metals and the galvanic corrosion in the lap area of the joint. The maximum weight loss of AA 1100 aluminium and SGACD zinc coated steel that was occurred in the sodium chloride with 3.25% was 2.203% and 3.208%, respectively.. The maximum corrosion rate of AA 1100 aluminium and SGACD zinc coated steel that was occurred in 4.00% and 3.5% sodium chloride solution was 0.156 mm/year and 0.479 mm/year, respectively.

Effect of Zinc-enriched Yeast FF-10 Strain on the Alcoholic Hepatotoxicity in Alcohol Feeding Rats

  • Cha, Jae-Young;Heo, Jin-Sun;Cho, Young-Su
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1207-1213
    • /
    • 2008
  • The possible protective effects of highly zinc-containing yeast Saccharomyces cerevisiae, FF-10 strain, isolated from tropical fruit rambutan on acute alcoholic liver injury in rats were evaluated. Zinc concentration in this strain was 30.6mg%. The activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and $\gamma$-glutamyl transpeptidase ($\gamma$-GTP) were highly increased when alcohol was treated, relative to the normal rats. Also, a highly significant increase in the blood alcohol and acetaldehyde levels by alcohol treatment was observed. Administration of FF-10 strain markedly prevented alcohol-induced elevation of the activities of serum ALT, AST, and $\gamma$-GTP, and the levels of blood alcohol and acetaldehyde, and these reduced levels reached to that of normal rats. As compared with alcohol treated control rats, the FF-10 strain supplementation showed highly decreased the triglyceride concentration in serum. Alcohol treatment induced the marked accumulation of small lipid droplets, hepatocytes necrosis, and inflammation, but FF-10 strain administration attenuated to alcohol-induced accumulation of small lipid droplets and hepatocyte necrosis in the liver. Therefore, the current finding suggests that zinc-enriched yeast FF-10 strain isolated from tropical fruit rambutan may have protective effect against alcohol-induced hepatotoxicity.