• Title/Summary/Keyword: Zinc accumulation

Search Result 100, Processing Time 0.028 seconds

Growth and Heavy Metal Absorption Capacity of Aster koraiensis Nakai According to Types of Land Use (토지이용 형태별 벌개미취의 생육 및 중금속 흡수능)

  • Ju, Young-Kyu;Kwon, Hyuk-Jun;Cho, Ju-Sung;Shin, So-Lim;Kim, Tae-Sung;Choi, Su-Bin;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.24 no.1
    • /
    • pp.48-54
    • /
    • 2011
  • This study was performed to analyze the possibility of using Korean native Aster koraiensis Nakai for phytoremediation at various fields. A. koraiensis was cultivated at paddy, upland and forest soils contaminated with heavy metals. After 8 weeks of cultivation, and growth and its absorbing capacity of heavy metals were analyzed. The results showed that A. koraiensis was grown well even at the soil highly contaminated with heavy metals, which means it has a tolerance to heavy metals. As analysis results of arsenic, cadmium, copper, lead and zinc contents absorbed from various soils contaminated with heavy metals, heavy metal absorbing capacity of A. koraiensis was depending on the heavy metal contents in the soils and soil property. In case of arsenic, cadmium and copper, heavy metal accumulation capacities of Aster koraiensis were much influenced by contents of heavy metals in the soils. Absorbing capacity of plants was increased when heavy metal contents in the soils were high. Lead absorbing capacity was depending more on soil property than lead contents in the soil, and was great at sandy soil of forest. Zinc absorbing capacity was influenced by both soil properties and Zn contents in the soil, was increased at paddy soil contaminated with high concentrations of heavy metals and upland soils. In general, A. koraiensis had a tolerance to heavy metals and showed great absorbing capability of heavy metals. So A. koraiensis can be used as a good landscape material for phytoremediation at various soils contaminated with heavy metals.

Microbiological Characteristics of Heavy Metal Ion-Tolerant Microorganisms. (중금속 내성균주의 미생물학적 성질)

  • 유대식
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.4
    • /
    • pp.183-190
    • /
    • 1979
  • Cadmium ion-tolerant microorganisms were isolated from the sludge and soil of a cadmium ion-polluted area, a zinc mineralized area, in Kyung Sang Pook Do, Korea. A strain, C-7, which showed tile highest tolerance to cadmium ion was selected by screening from 18 cadmium tolerant microorganisms. By the taxonomical characteristics of this strain, it was identified as a variant of Erwinia sp.. The strain grew in a medium cadmium ion up to a concentration of 2, 800 $\mu\textrm{g}$/ml and the maximum intercellular accumulation of Cd$^{2+}$ was measured to be 28.60 mg/g dried cells (57.2%) during incubation in medium containing 50 $\mu\textrm{g}$/ml under aerobic condition at 28$^{\circ}C$ for 24 hour.r.

  • PDF

Toxicometallomics of Cadmium, Manganese and Arsenic with Special Reference to the Roles of Metal Transporters

  • Himeno, Seiichiro;Sumi, Daigo;Fujishiro, Hitomi
    • Toxicological Research
    • /
    • v.35 no.4
    • /
    • pp.311-317
    • /
    • 2019
  • The transport systems for metals play crucial roles in both the physiological functions of essential metals and the toxic effects of hazardous metals in mammals and plants. In mammalian cells, Zn transporters such as ZIP8 and ZIP14 have been found to function as the transporters for Mn(II) and Cd(II), contributing to the maintenance of Mn homeostasis and metallothionein-independent transports of Cd, respectively. In rice, the Mn transporter OsNramp5 expressed in the root is used for the uptake of Cd from the soil. Japan began to cultivate OsNramp5 mutant rice, which was found to accumulate little Cd, to prevent Cd accumulation. Inorganic trivalent arsenic (As(III)) is absorbed into mammalian cells via aquaglyceroporin, a water and glycerol channel. The ortholog of aquaporin in rice, OsLsi1, was found to be an Si transporter expressed in rice root, and is responsible for the absorption of soil As(III) into the root. Since rice is a hyperaccumulator of Si, higher amounts of As(III) are incorporated into rice compared to other plants. Thus, the transporters of essential metals are also utilized to incorporate toxic metals in both mammals and plants, and understanding the mechanisms of metal transports is important for the development of mitigation strategies against food contamination.

Isolation of Cadmium-Tolerant Bacteria and Characterization of Cadmium Accumulation into the Bacteria Cell (카드뮴 내성균(耐性菌)의 분리(分離), 동정(同定)및 균체내(菌體內) 카드뮴 축적(蓄積) 특성(特性))

  • Cho, Ju-Sik;Han, Mun-Gyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 1992
  • Of the cadmium-tolerant 162 bacterial strains isolated from soils, river waters or active sludges of waste-water disposal plants in the Gyeongnam province a strain C1, which showed considerably higher growth rate in the agar plate containing 2000 ppm than any other strains isolated, was identified as a Pseudomonas putida or its similar strain when analyzed by taxonomical characteristics. Optimum pH and temperature for the growth of the P, putida were 7.0 and $30^{\circ}C$, respectively. This strain was resistant to antibiotics(ampicillin, chloramphenicol and streptomycin), and heavy metals(lithium, cupper, lead and zinc). This strain utilized salicylate, naphthalene or xylene as a sole carbon source. The rate of cadmium accumulation in P. putida cell was enhanced at low concentration of Cd in the growth media. The maximum cadmium absorption by this strain grown in 1 and l0ppm of Cd was respectively 78% and 60% 24 hrs after culture, but in 100 ppm Cd, 40% 48 hrs after culture. Addition of a non-ionic surfactant Triton X-100(0.1%) to the medium enhanced the accumulation of cadmium in the P. putida up to approximately 37%.

  • PDF

Studies on the tolerance of Halophyte Arabis stelleri under heavy metals and Salt stress condition (염생식물 섬갯장대(Arabis stelleri var. japonica)의 중금속 및 고염 농도 스트레스 상태에서 내성 연구)

  • Kim, Donggiun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.373-378
    • /
    • 2019
  • In the marine area, the salt concentration in the soil increases, and the inland heavy metal pollution increases the damage of plants. In the inland industrial development area, researches on the genetic resources of plants together with the heavy metal accumulation of Co, Ni, Zn, and so on are required. Both of these problems have caused scientists to work hard to find plants that are likely to cause stress in plant roots. In this study, seeds of Arabis stelleri var. japonica collected near the shore were used for germination. The growth and development and tolerance of both Arabis and Arabidopsis seeds were investigated under laboratory culture conditions. As a result, Arabis showed resistance about 3 times in 250 mM nickle and cobalt, and more than 4 times in 1 mM zinc when compared to Arabidopsis. The tolerance of Arabis to Na salts increased by 20% or more at 50 mM concentration and Arabis was resistant to heavy metals and salt concentration. The accumulation of Na ions in the body was measured as a preparation for studying the intracellular mechanism. As a result, it showed a further decrease in resistance to ground water roots. It is considered that the activity of the exporting gene is important rather than the mechanism of accumulation.

Accumulation, Mobility, and Availability of Copper and Zinc in Plastic Film House Soils Using Speciation Analysis (종 분석을 이용한 시설재배지 토양 구리와 아연의 집적, 이동성 및 유효성 평가)

  • Kim, Rog-Young;Sung, Jwa-Kyung;Lee, Ju-Young;Lee, Ye-Jin;Jung, Sug-Jae;Lee, Jong-Sik;Jang, Byoung-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.937-944
    • /
    • 2010
  • Cu and Zn can be accumulated in plastic film house soils by long-term application of livestock manure or compost. The mobility and bioavailability of Cu and Zn accumulated in soils are strongly influenced by their chemical or geochemical species in soils. In order to assess the accumulation, mobility, and bioavailability of Cu and Zn in plastic film house soils, we determined their geochemical species using a sequential extraction, grouped into three pods: the total pool, the potentially mobil pool, and the mobil pool. Total contents of Cu and Zn, ranged from 14.9 to 53.1 mg $kg^{-1}$ for Cu and from 55.4 to 169 mg $kg^{-1}$ for Zn, lied by far below the soil contamination standards, but exhibited little accumulation compared with their geogenic concentrations. Mobile contents of Cu and Zn and their percentage of total contents were strongly affected by soil pH in addition to total contents and soil organic matter. Mobile contents of Cu, ranged from <0.01 to 1.71 mg $kg^{-1}$, showed their minimum between pH 5.0 and 6.0 and increased above pH 6.0 to 8.0. In contrast, mobile contents of Zn, varied from <0.01 to 12.4 mg $kg^{-1}$, showed their minimum above pH 7.0 and increased strongly with decreasing pH below 5.5~6.0. Potentially mobile and total contents of Cu and Zn rose with ascending soil organic matter. To assess ecological and toxic effects of Cu and Zn in soils, mobile and potentially mobile contents, as bioavailable and potentially bioavailable pools, should be considered more important than total contents.

Effects of Dietary Chitosan on Blood and Tissue Levels of Lead, Iron, Zinc, and Calcium in Lead Administered Rats (납 투여 흰쥐에서 혈액과 조직의 무기질 함량에 미치는 키토산의 섭취효과)

  • Park, Joo-Ran;Lee, Yeon-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.3
    • /
    • pp.336-341
    • /
    • 2005
  • Chitosan, which is a biopolymer, composed of glucosamine units linked by β-l, 4 glycoside bonds, is rich in shells of crustacean such as crabs and shrimps. We examined effects of dietary chitosan on blood and tissue levels of lead, iron, zinc and calcium in lead administered rats. Male Sprague-Dawley rats were divided into 4 groups (n=32). Basal diet group was fed 3% cellulose diet and lead administered groups were fed 0%, 3% and 5% chitosan diets, respectively for 8 wks. To lead administered groups, lead (20㎎/day) was given three times per week by oral injection. Blood, liver, kidney and femur were collected for lead, iron, zinc, and calcium analyses. There was no significant difference in weight gain and food intake among groups. Blood and femur lead levels were lower in lead administered groups fed 3% and 5% chitosan diets than in lead administered control (0% chitosan diet) group (p&lt;0.05). Blood and liver levels of iron and zinc in lead administered group fed 5% chitosan diet were significantly lower than those in basal diet group (p&lt;0.05), but those in lead administered group fed 3% chitosan diet were not significantly different with those in basal diet group. These results show that chitosan diets have beneficial effects on lowering the accumulation of lead, but high chitosan diet may have negative effects on mineral levels.

Pollution of Heavy Metals and Sedimentation Rate in the Sediments of Suyeong Bay, Pusan (수영만 퇴적물의 퇴적속도와 중금속 오염)

  • YANG Han-Soeb;KIM Seong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.643-658
    • /
    • 1994
  • The sedimentary records of anthropogenic metal loads in the Suyeong Bay, Pusan were determined by combining the Pb-210 dating technique with the measurements of heavy metals in the sediment cores. The sedimentation rates of sediment particles ranged from $0.12\;to\;0.20\;g/m^2/yr\;or\;2.4{\sim}4.0\;mm/yr$ in accumulation rates. The lowest sedimentation rate was observed at station S3 which was characterized by a bottom with relatively low organic matter contents(e.g. TIL and TOC). Heavy metals showed generally higher concentrations at station S1 and S2 near the mouth of the Suyeong River than at station S3 and the outmost station S4. The contents of copper, lead and zinc in the sediment cores especially from station S1 and S2 began to increase around 1930, and were at their highest levels in the $1960{\sim}1970$ period as a result of increasing industrial activities. Concentrations of these heavy metals have slightly decreased since 1970, probably due to regulation of pollution discharge. The natural background levels of copper, lead and zinc in the sediments of this bay ranged $18{\pm}4ppm,\;28{\pm}6ppm\;and\;74{\pm}9ppm$, respectively, by averaging the contents in the sediment depths corresponding to periods between about 1900 and 1920 at the four stations. The total amounts of anthropogenic loads deposited in the sediments since about 1930 were estimated to be $9{\sim}291{mu}g/cm^2$ for lead, $165{\sim}1122{mu}g/cm^2$ for zinc and $20{\sim}208{mu}g/cm^2$ for copper. These values were remarkably high at stations S1 and S2 relative to the other two stations. At stations S1 and S2, the anthropogenic loads of lead, copper and zinc constituted $29{\sim}30\%,\;32{\sim}42\%\;and\;28{\sim}35\%$ of the total sedimentary inventories at the present day, respectively. These metal contents have a good correlation(r>0.7) with each other and cadmium measurements also show a positive linear relation with nickel or total organic nitrogen.

  • PDF

Heavy Metal Concentration in Liver and Kidney of Shorebirds Migrating to Yeongjong and Sammok Islands (영종도와 삼목도에 도래하는 섭금류(Shorebirds)의 간과 신장에서 중금속 농도)

  • 김정수;박성근;이두표;구태회;원병오
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.193-198
    • /
    • 2004
  • This study was about heavy metal accumulation in liver and kidney of Shorebirds migrating to yeongjong and Sammok Island. Zinc concentration was highest in liver(76.7 ㎍/wet g) and kidney (65.7 ㎍/wet g) of Limosa lapponica to Yeongjong Island. In case of manganese, the highest accumulation in liver was Tringa nebularia to Yeongjong Island, and in kidney was Charadrius alexandrinus, to Sammok Island, respectively 4.68㎍/wet g, 18.6㎍/wet g. Copper concentration was th highest that in liver(25.4㎍/wet g) was Limosa lapponica to Yeongjong Island, in kidney(11.7 ㎍/wet g) was Tringa cinereus to Sammok Island. Calidris ruficollis to Sammok Island was the highest accumulated lead and concentration was 17.0㎍/wet g in liver, 40.2 ㎍/wet g in kidney. Lead concentration was more in kidney than in liver. Cadmium concentration in liver was the highest accumulated Calidris alpina(0.73±0.26 ㎍/wet g) to Yeongjong Island, in kidney was the highest accumulated Charadrius alexandrinus(4.89±1.49 ㎍/wet g) to Yeongjong Island. Cadmium concentration was higher in kidney than in liver to all species. Therefore, lead and cadmium concentration was more to Yeongjong than to Sammok Island in liver and kidney except Calidris tenuirostris.

Copper Accumulation in Cells of Copper-Tolerant Bacteria, Pseudomonas stutzeri (구리 내성균(Pseudomonas stutzeri)의 균체내 구리 축적특성)

  • Cho, Ju-Sik;Han, Mun-Gyu;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.48-54
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. The copper-tolerant bacteria, Pseudomonas stutzeri which possessed the ability to accumulate copper, was isolated from mine wastewaters polluted with various heavy metals. The characteristics of copper accumulation in the cells and the recovery of the copper from the cells accumulating zinc, were investigated. Removal rate of copper from the solution containing 100mg/l of copper by copper-tolerant bacteria was more than 78% at 2 days after inoculation with the cells. A large number of the electron-dense granules were found mainly on the cell wall and cell membrane fractions, when determined by transmission electron microscopy. Energy dispersive X-ray spectroscopy revealed that the electron-dense granules were copper complex with the substances binding copper. The copper accumulated into the cells was not desorbed by deistilled water, but more than 80% of the copper accumulated was desorbed by 0.1M-EDTA solution. The residues of the cells after combustion at $550^{\circ}C$ amounted to about 23.2% of the dry weight of the cells. EDS analysis showed that residues were relatively pure copper compound containing more than 78.4% of copper.

  • PDF