• Title/Summary/Keyword: Zika virus strains

Search Result 2, Processing Time 0.018 seconds

Clinical profile of Asian and African strains of Zika virus in immunocompetent mice

  • Shin, Minna;Kim, Jini;Park, Jeongho;Hahn, Tae-Wook
    • Korean Journal of Veterinary Research
    • /
    • v.61 no.2
    • /
    • pp.12.1-12.9
    • /
    • 2021
  • The mosquito-borne pathogen Zika virus may result in neurological disorders such as Guillain-Barré syndrome and microcephaly. The virus is classified as a member of the Flaviviridae family and its wide spread in multiple continents is a significant threat to public health. So, there is a need to develop animal models to examine the pathogenesis of the disease and to develop vaccines. To examine the clinical profile during Zika virus infection, we infected neonatal and adult wild-type mice (C57BL/6 and Balb/c) and compared the clinical signs of African-lineage strain (MR766) and Asian-lineage strain (PRVABC59, MEX2-81) of Zika virus. Consistent with previous reports, eight-week-old female Balb/c mice infected with these viral strains showed no changes in body weight, survival rate, and neurologic signs, but demonstrated increases in the weights of spleens and hearts. However, one-day-old neonates showed significantly lower survival rate and body weight with the African-lineage strain than the Asian-lineage strain. These results confirmed the pathogenic differences between Zika virus strains. We also evaluated the clinical responses in neonatal and adult mice of different strains. Our findings suggest that these are useful mouse models for characterization of Zika virus for vaccine development.

Simple, Rapid and Sensitive Portable Molecular Diagnosis of SFTS Virus Using Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP)

  • Baek, Yun Hee;Cheon, Hyo-Soon;Park, Su-Jin;Lloren, Khristine Kaith S.;Ahn, Su Jeong;Jeong, Ju Hwan;Choi, Won-Suk;Yu, Min-Ah;Kwon, Hyeok-il;Kwon, Jin-Jung;Kim, Eun-Ha;Kim, Young-il;Antigua, Khristine Joy C.;Kim, Seok-Yong;Jeong, Hye Won;Choi, Young Ki;Song, Min-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1928-1936
    • /
    • 2018
  • Recently, human infections caused by severe fever with thrombocytopenia syndrome virus (SFTSV), which can lead to fatality, have dramatically increased in East Asia. With the unavailability of vaccines or antiviral drugs to prevent and/or treat SFTSV infection, early rapid diagnosis is critical for prevention and control of the disease. Here, we report the development of a simple, rapid and sensitive portable detection method for SFTSV infection applying reverse transcription-loop mediated isothermal amplification (RT-LAMP) combined with one-pot colorimetric visualization and electro-free reaction platform. This method utilizes a pocket warmer to facilitate diagnosis in a resource-limited setting. Specific primers were designed to target the highly-conserved region of L gene of SFTSV. The detection limit of the RT-LAMP assay was approximately $10^0$ viral genome copies from three different SFTSV strains. This assay exhibited comparable sensitivity to qRT-PCR and 10-fold more sensitivity than conventional RT-PCR, with a rapid detection time of 30 to 60 minutes. The RT-LAMP assay using SFTSV clinical specimens has demonstrated a similar detection rate to qRT-PCR and a higher detection rate compared to conventional RT-PCR. Moreover, there was no observed cross-reactive amplification of other human infectious viruses including Japanese Encephalitis Virus (JEV), Dengue, Enterovirus, Zika, Influenza and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). This highly sensitive, electro- and equipment-free rapid colorimetric visualization method is feasible for resource-limited SFTSV field diagnosis.