• Title/Summary/Keyword: Zigzag migration

Search Result 2, Processing Time 0.017 seconds

Chemically Induced Zigzag Migration in Alumina Bicrystals (알루미나 쌍결정에서 조성변화에 의한 Zigzag Migration)

  • 백용균;강석중
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1117-1122
    • /
    • 1995
  • The effect of grain boundary structure on zigzag migrtion has been studied. Five kinds of a(2110)-m(1010) diffusion couples with different twist angles by 30$^{\circ}$from a [0001] common direction of each plane were prepared. When chromia (Cr2O3) was added to the diffusion couples by a vapor phase, zigzag migration of the grain boundary occurred. The fraction of zigzag migration did not essentially vary with the twist angle, but the magnitude and migration distance of individual migrating segment varied. The variation of CIGM morphology thus appears to result from the change in grain boundary mobility due to microscopic deviation of grain boundary structure out of a macroscopic grain boundary orientation.

  • PDF

A Lab-Made Wound Maker for Analysis of Cell Migration in a 96-Well Plate (세포 이동능력 분석을 위한 96-Well Plate 전용 Lab-Made Wound Maker)

  • Lee, Tae Bok;Kim, Hwa Ryoung;Park, Seo Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • Cell migration is a central process for recovering from wounds triggered by physical distress besides embryogenesis and cancer metastasis. Wound healing assay is widely used as a fundamental research technique for investigation of two-dimensional cell migration in vitro. The most common approach for imitating physical wound in vitro is mechanical scratching on the surface of the confluent monolayer by using sharp materials. The iron metal pin with a suspension spring for fine adjustment of the orthogonal contact surface between the scratching point and the individual bottom of multi-well plate with planar curvatures were adopted for the creative invention of a 96-well plate wound maker. While classic tips drew diverse and zigzag scratching patterns on the confluent monolayer, our wound maker displayed synchronized linear wounds in the middle of each well of a 96-well plate that was seeded with several cell lines. Given that several types of multi-well plates commercially available are compatible with our lab-made wound maker for creating uniform scratches on the confluent monolayer for the collective cell migration in wound healing assay, it is certain that the application of this wound maker to the real-time wound healing assay in high content screening (HCS) is superior than utilization of typical polypropylene pipette tips.