• Title/Summary/Keyword: Zigzag

Search Result 380, Processing Time 0.027 seconds

Heat Transfer and Pressure Drop Characteristics in Zigzag Channel Angles of Printed Circuit Heat Exchangers (지그재그채널 PCHE의 각도에 따른 열전달 및 압력강하특성)

  • Choi, Mi-Jin;Kwon, Oh-Kyung;Cha, Dong-An;Yeun, Jae-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1147-1152
    • /
    • 2009
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the zigzag channel PCHE using diffusion bonding technology by numerical analysis. PCHE of five types are designed, which are zigzag channel angle $180^{\circ}$, $160^{\circ}$, $140^{\circ}$, $120^{\circ}$ and $100^{\circ}$. The zigzag PCHE was numerically investigated for Reynolds number in a range of $150{\sim}800$. The temperatures of the hot side were performed at $80^{\circ}C$ while that of the cold side was conducted at $20^{\circ}C$. The results show that the performance of heat transfer rate for zigzag channel $100^{\circ}$ increases about 11.5% compared to that of zigzag channel $180^{\circ}$. On the other hand, the performance of pressure drop for zigzag channel $100^{\circ}$ is remarkably higher than that of zigzag channel $180^{\circ}$, about 1.4 times.

  • PDF

Heat Transfer and Pressure Drop Characteristics in Zigzag Channel Angles of Printed Circuit Heat Exchangers (지그재그채널 PCHE의 각도에 따른 열전달 및 압력강하특성)

  • Kwon, Oh-Kyung;Choi, Mi-Jin;Choi, Young-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.475-482
    • /
    • 2009
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the zigzag channel PCHE using diffusion bonding technology by numerical analysis. PCHE of five types are designed, which are zigzag channel angle 180$^{\circ}$, 160$^{\circ}$, 140$^{\circ}$, 120$^{\circ}$ and 100$^{\circ}$. The zigzag PCHE was numerically investigated for Reynolds number in a range of 150$\sim$800. The temperatures of the hot side were performed at 80$^{\circ}$ while that of the cold side was conducted at 20$^{\circ}C$. The results show that the performance of heat transfer rate for zigzag channel 100$^{\circ}$ increases about 11.5% compared to that of zigzag channel 180$^{\circ}$. On the other hand, the performance of pressure drop for zigzag channel 100$^{\circ}$ is remarkably higher than that of zigzag channel 180$^{\circ}$, about 2.4 times.

Chemically Induced Zigzag Migration in Alumina Bicrystals (알루미나 쌍결정에서 조성변화에 의한 Zigzag Migration)

  • 백용균;강석중
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1117-1122
    • /
    • 1995
  • The effect of grain boundary structure on zigzag migrtion has been studied. Five kinds of a(2110)-m(1010) diffusion couples with different twist angles by 30$^{\circ}$from a [0001] common direction of each plane were prepared. When chromia (Cr2O3) was added to the diffusion couples by a vapor phase, zigzag migration of the grain boundary occurred. The fraction of zigzag migration did not essentially vary with the twist angle, but the magnitude and migration distance of individual migrating segment varied. The variation of CIGM morphology thus appears to result from the change in grain boundary mobility due to microscopic deviation of grain boundary structure out of a macroscopic grain boundary orientation.

  • PDF

Sensitivity Analysis of the Zigzag Switch under Acceleration and Centrifugal Forces (가속력과 원심력을 받는 지그잭 스위치의 민감도 해석)

  • 김경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1067-1072
    • /
    • 1996
  • Sensitivity analysis of the cylindrical zigzag cams under acceleration and centrifugal forces is performed. A Lagrangian method is used to determine the mechanism constant of zigzag track, And the equation of motion for cylindrical zigzag cam under rectangular pulse is derived by the governing equations of a single spring mass system. The ratio of the drive force tn resisting force is derived by angular acceleration, centrifugal force and setback force on the operation of the munition. The theoretical sensitivity curves for 3 models are analyzed. And experiments for 3 models are conducted to check safe and functional zone. Zigzag cam types can be satisfied all major design requirements for switch system of munition.

  • PDF

Electron transport properties of Y-type zigzag branched carbon nanotubes

  • MaoSheng Ye;HangKong, OuYang;YiNi Lin;Quan Ynag;QingYang Xu;Tao Chen;LiNing Sun;Li Ma
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.263-275
    • /
    • 2023
  • The electron transport properties of Y-type zigzag branched carbon nanotubes (CNTs) are of great significance for micro and nano carbon-based electronic devices and their interconnection. Based on the semi-empirical method combining tight-binding density functional theory and non-equilibrium Green's function, the electron transport properties between the branches of Y-type zigzag branched CNT are studied. The results show that the drain-source current of semiconducting Y-type zigzag branched CNT (8, 0)-(4, 0)-(4, 0) is cut-off and not affected by the gate voltage in a bias voltage range [-0.5 V, 0.5 V]. The current presents a nonlinear change in a bias voltage range [-1.5 V, -0.5 V] and [0.5 V, 1.5 V]. The tangent slope of the current-voltage curve can be changed by the gate voltage to realize the regulation of the current. The regulation effect under negative bias voltage is more significant. For the larger diameter semiconducting Y-type zigzag branched CNT (10, 0)-(5, 0)-(5, 0), only the value of drain-source current increases due to the larger diameter. For metallic Y-type zigzag branched CNT (12, 0)-(6, 0)-(6, 0), the drain-source current presents a linear change in a bias voltage range [-1.5 V, 1.5 V] and is symmetrical about (0, 0). The slope of current-voltage line can be changed by the gate voltage to realize the regulation of the current. For three kinds of Y-type zigzag branched CNT with different diameters and different conductivity, the current-voltage curve trend changes from decline to rise when the branch of drain-source is exchanged. The current regulation effect of semiconducting Y-type zigzag branched CNT under negative bias voltage is also more significant.

An Algorithm for Reducing the Tool Retraction Length in Zigzag Pocket Machining (Zigzag 포켓가공에서 공구후퇴 길이를 줄이는 알고리듬)

  • Kim, Byoung Keuk;Park, Joon Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.2
    • /
    • pp.128-138
    • /
    • 2002
  • In this paper, we address how to reduce the length of tool retraction in a zigzag pocket machining. Tool retraction, in a zigzag pocket machining, is a non-cutting operation in which the tool moves to any remaining regions for machining. We developed an algorithm of generating tool retraction length in convex or concave polygonal shapes including islands. In the algorithm, we consider concave areas of cutting direction in the polygonal shape. Considering concave areas of cutting direction, the polygonal shape is decomposed to subregions which do not need any tool retraction. Using the proposed algorithm, we calculated the shortest length of tool retraction in cutting direction. Examples are shown to verify the validity of the algorithm.

Fabrication of Bending Actuator using Zigzag-type Shape Memory Alloy Spring (지그재그 형태의 형상기억합금 스프링을 이용한 굽힘 액추에이터의 제작)

  • Im, An-Su;Lee, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.269-274
    • /
    • 1999
  • A bending actuator using zigzag type shape memory alloy springs has been fabricated and characterized. The fabricated millimeter-sized actuator has outer diameter of 3.0mm and inner diameter of 2.0mm. The zigzag type spring is more suitable for thin wall type actuator because the zigzag type spring has a planar structure comparing with the coil type spring which has a three-dimensional structure. The measured characteristics of the fabricated bending actuator show the possibility of practical application to micro active bending catheters.

  • PDF

Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix

  • Besseghier, Abderrahmane;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Benzair, Abdelnour
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In the current study, the nonlinear vibration properties of an embedded zigzag single-walled carbon nanotube (SWCNT) are investigated. Winkler-type model is used to simulate the interaction of the zigzag SWCNTs with a surrounding elastic medium. The relation between deflection amplitudes and resonant frequencies of the SWCNT is derived through harmonic balance method. The equivalent Young's modulus and shear modulus for zigzag SWCNT are derived using an energy-equivalent model. The amplitude - frequency curves for large-amplitude vibrations are graphically illustrated. The simulation results show that the chirality of zigzag carbon nanolube as well as surrounding elastic medium play more important roles in the nonlinear vibration of the single-walled carbon nanotubes.

Zigzag Gait Planning of n Quadruped Walking Robot Using Geometric Search Method (기하학적 탐색을 이용한 4각 보행로봇의 지그재그 걸음새 계획)

  • Park, Se-Hoon;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.142-150
    • /
    • 2002
  • This paper presents a systematic method of the zigzag gait planning for quadruped walking robots. When a robot walks with a zigzag gait, its body is allowed to move from side to side, while the body movement is restricted along a moving direction in conventional continuous gaits. The zigzag movement of the body is effective to improve the gait stability margin. To plan a zigzag gait in a systematic way, the relationship between the center of gravity(COG) and the stability margin is firstly investigated. Then, new geometrical method is introduced to plan a sequence of the body movement which guarantees a maximum stability margin as well as monotonicity along a moving direction. Finally, an optimal swing-leg sequence is chosen for a given arbitrary configuration of the robot. To verify the proposed method, computer simulations have been performed for both cases of a periodic gait and a non-periodic gait.

A Numerical Study on Improving the Thermal Hydraulic Performance of Printed Circuit Heat Exchanger Using the Supercritical Carbon Dioxide (초임계 이산화탄소를 작동유체로 한 PCHE의 열수력 성능 향상을 위한 수치해석적 연구)

  • Park, Bo Guen;Kim, Dae Hyun;Chung, Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.779-786
    • /
    • 2015
  • The objective of this study is to propose a new channel shape that improves thermal-hydraulic performance. The existing Zigzag channel has high pressure loss due to flow separation and reverse flow. To improve this disadvantage, partial straight channel is inserted into bended points. Also, the effects of straight channel's length change on heat transfer and pressure loss are analyzed. Thermal-hydraulic performance of the new shape and existing Zigzag channel are quantitatively compared in terms of Goodness Factor. Mass flow rate was changed from $1.41{\times}10^{-4}$ to $2.48{\times}10^{-4}kg/s$. The average volume goodness factor of 1mm straight channel shape was increased by 25% compared to the Zigzag channel.