• Title/Summary/Keyword: Zeroth-Order

Search Result 86, Processing Time 0.025 seconds

Bandwidth Improved Hybrid Metamaterial Antenna Using Folded Parasitic Patch (접힌 기생 패치를 이용한 확장된 대역폭을 갖는 하이브리드 메타 물질 안테나)

  • Ko, Seung-Tae;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.583-591
    • /
    • 2012
  • In this paper, using a folded parasitic patch, a hybrid metamaterial antenna having the enhanced bandwidth is presented. To obtain a broad bandwidth of the antenna, a zeroth-order resonance(ZOR) mode of a mushroom antenna and a $TM_{010}$ mode of a conventional patch antenna are combined. By employing an etched rectangular hole and a folded parasitic patch in the conventional patch antenna, a resonance frequency of the $TM_{010}$ mode can be down-shifted toward that of the ZOR mode without changing the size of the antenna. Therefore, the proposed antenna has broad bandwidth which ranges from the ZOR mode to the $TM_{010}$ mode. As a result, a fractional bandwidth of the proposed antenna is measured as 12 % and a radiation efficiency is above 75 % in whole band.

Shelf-life prediction of fresh ginseng packaged with plastic films based on a kinetic model and multivariate accelerated shelf-life testing

  • Jong-Jin Park;Jeong-Hee Choi;Kee-Jai Park;Jeong-Seok Cho;Dae-Yong Yun;Jeong-Ho Lim
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.573-588
    • /
    • 2023
  • The purpose of this study was to monitor changes in the quality of ginseng and predict its shelf-life. As the storage period of ginseng increased, some quality indicators, such as water-soluble pectin (WSP), CDTA-soluble pectin (CSP), cellulose, weight loss, and microbial growth increased, while others (Na2CO3-soluble pectin/NSP, hemicellulose, starch, and firmness) decreased. Principal component analysis (PCA) was performed using the quality attribute data and the principal component 1 (PC1) scores extracted from the PCA results were applied to the multivariate analysis. The reaction rate at different temperatures and the temperature dependence of the reaction rate were determined using kinetic and Arrhenius models, respectively. Among the kinetic models, zeroth-order models with cellulose and a PC1 score provided an adequate fit for reaction rate estimation. Hence, the prediction model was constructed by applying the cellulose and PC1 scores to the zeroth-order kinetic and Arrhenius models. The prediction model with PC1 score showed higher R2 values (0.877-0.919) than those of cellulose (0.797-0.863), indicating that multivariate analysis using PC1 score is more accurate for the shelf-life prediction of ginseng. The predicted shelf-life using the multivariate accelerated shelf-life test at 5, 20, and 35℃ was 40, 16, and 7 days, respectively.

Compact UHF 9th-Order Bandpass Filter with Sharp Skirt by Cascaded-Triplet CRLH-ZOR

  • Kahng, Sungtek;Lee, Boram;Park, Taejoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1152-1156
    • /
    • 2013
  • We propose a compact high-order(9th) UHF bandpass filter comprising the composite right-handed and left-handed(CRLH) zeroth-order resonators(ZORs) in the form of the three cascaded-triplets(CTs) newly applied to the ZOR filter which results in very steep skirt. The method is verified by circuit and EM simulations and measurement with metamaterial properties.

Rotordynamic Analysis of Compressor Labyrinth Seals (압축기용 라비린스 실의 동특성 해석)

  • 하태웅;이안성
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.849-855
    • /
    • 1998
  • An analysis of lateral hydrodynamic forces of compressor labyrinth seals is presented. Basic equations are derived using a two-control-volume model for compressible flow. Blasius' wall friction-factor formula and jet flow theory are used for the calculaton of wall shear stresses and recirculation velocity in the cavity. Linearized zeroth-order and first-order perturbation equations are developed for a small motion about the centered position by expansion in the eccentricity ratio. Integraton of the resultant first-order pressure distribution over the seal defines the rotordynamic coefficients. As an application a rotordynamic analysis of the balance drum labyrinth seal found in an ethylene regrigeration copmressor is carried out. The rotordynamic characteristic results of the labyrinth seal are presented and compared with other types of seals, honeycomb seal and smooth seal.

  • PDF

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 실의 누설량 및 동특성계수 해석)

  • 하태웅;이용복;김창호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.528-534
    • /
    • 2001
  • Basic equations and its solution procedure are derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients are presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

Rotordynamic and Leakage Analysis for Stepped-Labyrinth Gas Seal (압축기용 계단식 래버린스 실의 누설 및 동특성해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1084-1089
    • /
    • 2000
  • The basic equations are derived for the analysis of a stepped labyrinth gas seal which are generally used in high performance compressors, gas turbines, and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The leakage and rotordynamic characteristic results of the stepped labyrinth gas seal are presented and compared with Scharrer's theoretical analysis using Blasius' wall-friction-factor formula.

  • PDF

Rotordynamic Analysis for Stepped-Labyrinth Gas Seals Using Moodys Friction-Factor Model

  • Ha, Tae-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1217-1225
    • /
    • 2001
  • The governing equations are derived for the analysis of a stepped labyrinth gas seal generally used in high performance compressors, gas turbines, and steam turbines. The bulk-flow is assumed for a single cavity control volume set up in a stepped labyrinth cavity and the flow is assumed to be completely turbulent in the circumferential direction. The Moodys wall-friction-factor model is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the stepped labyrinth gas seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The resulting leakage and rotordynamic characteristics of the stepped labyrinth gas seal are presented and compared with Scharrers theoretical analysis using Blasius wall-friction-factor model. The present analysis shows a good qualitative agreement of leakage characteristics with Scharrers analysis, but underpredicts by about 20%. For the rotordynamic coefficients, the present analysis generally yields smaller predictied values compared with Scharrers analysis.

  • PDF

Rotordynamic and Leakage Analysis for Eccentric Annular Seal (편심된 펌프 실의 누설 및 회전체동역학적 해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-21
    • /
    • 2001
  • Basic equations and their solution procedure we derived for the analysis of an annular pump seal in which the rotor has a large static displacement from the centered position. The Bulk-flow is assumed for a control volume set in the seal clearance and the flow is assumed to be completely turbulent in axial and circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about an eccentric position. Flow variables are expanded by using Fourier series for the solution procedure. Integration of the resultant first-order pressure distribution along and around the seal defines the 12 elements of rotordynamic coefficients of the eccentric annular pump seal. The results of leakage and rotordynamic coefficients aye presented and compared with the Marquette's experimental results and the San Andres' theoretical analysis.

  • PDF

Leakage and Rotordynamic Analysis for Staggered-Labyrinth Gas Seal (엇갈린 래버린스 실의 누설량 및 동특성 해석)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • The basic equations are derived for the analysis of a staggered labyrinth gas seal which are generally used in high performance compressors and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the staggered labyrinth gas seal. Theoretical results of leakage and rotordynamic characteristics for the staggered labyrinth gas seal are compared with those of the plain seal and see-through labyrinth seal.

Rotordynamic Analysis for Labyrinth Seals Used in Compressors (압축기용 라비린스 실의 동특성 해석)

  • 하태웅;이안성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.138-144
    • /
    • 1997
  • The analysis of lateral hydrodynamic forces from the compressor labyrinth seals is presented. The basic equations are derived using a two-control-volume model for compressible flow. Blasius' wall friction-factor formula and jet flow theory are used for the calculation of the wall shear stresses and the recirculation velocity in the cavity. Linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the labyrinth seal. The rotordynamic analysis for the balance drum labyrinth seal of an ethylene refrigeration compressor is carried out. The results of rotordynamic characteristic of the labyrinth seal and comparisons with other types of seal, honeycomb seal and smooth seal, are presented.

  • PDF