• Title/Summary/Keyword: Zero-voltage-switching

Search Result 854, Processing Time 0.025 seconds

New ZVZCS PWM DC-DC Converters with One Auxiliary Swithch (단일 보조 스위치를 이용한 새로운 ZVZCS PWM DC-DC 컨버터)

  • Ryu, Seung-Hui;Lee, Dong-Yun;Yu, Sang-Bong;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.188-194
    • /
    • 2000
  • This paper presents new Zero-Voltage-/Zero-Current-Switching (ZVZCS) PWM DC-DC converters. The proposed soft-switching technique achieves ZVS and ZCS simultaneously at both turn-on and turn-off of the main switch and diode by using only one auxiliary switch. Also, the proposed soft-switching technique is suitable for not only minority but also majority carrier semiconductor devices. The auxiliary circuit of the proposed topology is placed out the main power path and therefore, there are no voltage/current stresses on the main switch and diode. The operating principle of the proposed topology is illustrated by a detailed study with a boost converter as an example. Theoretical analysis, simulation and experimental results are presented to explain the proposed schemes.

  • PDF

High Frequency Inverter for Induction Heating with Multi-Resonant Zero Current Switching (다중공진 영전류 스위칭을 이용한 고주파 유도가열용 인버터)

  • Ra, B.H.;Suh, K.Y.;Lee, H.W.;Kim, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.38-40
    • /
    • 2002
  • In the case of conventional high frequency inverter, with damage of switch by surge voltage when switch gets into compulsion extinction by load accident and so on because reactor is connected by series to switch, or there was problem of conduction loss by reactor's resistivity component, Also, it has controversial point of that can not ignore conduction loss of switch in complete work kind action of soft switching. In this paper, as high frequency induction heating power supply, we propose half bridge type multi resonance soft switching high frequency inverter topology that can realize high amplitude operation of load current with controlling switch current by multiplex resonance, mitigating surge voltage when switch gets into compulsion extinction and to be complete operation of zero current switching by opposit parallel connected reactor to inverter switch. and do circuit analysis for choice of most suitable circuit parameter of circuit

  • PDF

ZVS Resonant DC-link Inverter using Soft Switching Boost Converter (소프트 스위칭 부스트 컨버터를 사용한 ZVS 공진형 DC-link 인버터)

  • Kim, Young-Ho;Kim, Jae-Hyung;Park, Sang-Hun;Lee, Su-Won;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.137-139
    • /
    • 2008
  • A ZVS resonant DC-link inverter using soft switching boost converter is proposed in this paper. The proposed inverter is capable of switching in zero voltage states during the zero-dc-link-voltage period. As a result, the proposed circuit can reduce the switching loss. Operational principles and detailed analysis are presented. Simulation results are also presented to verify the operation principle.

  • PDF

A Study on the Zero-Voltage-Switching Three-Level DC/DC Converter using Primary Clamping Diodes (1차측 클램핑 다이오드를 이용한 ZVS Three-Level DC/DC 컨버터에 관한 연구)

  • Chon, Yong-Jin;Kim, Yong;Bae, Jin-Yong;Kim, Pil-Soo;Lee, Eun-Young;Chang, Boo-Hoan
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.164-168
    • /
    • 2004
  • A Zero-Voltage-Switching(ZVS) Three-Level Converter realizes ZVS for the switches with the use of the leakage inductance(or external resonant inductance) and the output capacitors of the switches, however; the rectifier diodes suffer from recovery which results in oscillation and voltage spike. In order to solve this problem, this paper proposes a novel ZVS Three-Level converter, which introduces two clamping diodes to the basic Three-Level converter to eliminate the oscillation and clamp the rectified voltage to the reflected input voltage.

  • PDF

A Study on the Zero-Voltage-Switching Three-Level DC/DC Converter without Primary Freewheeling Diodes (1차측 환류 다이오드를 제거한 ZVS Three-Level DC/DC 컨버터에 관한 연구)

  • Chon, Yong-Jin;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.183-187
    • /
    • 2005
  • A Zero-Voltage-Switching(ZVS) Three-Level Converter realizes ZVS for the switches with the use of the leakage inductance(or external resonant inductance) and the output capacitors of the switches, however; the rectifier diodes suffer from recovery which results in oscillation and voltage spike. In order to solve this problem, this paper proposes a novel ZVS Three-Level converter, which introduces two clamping diodes to the basic Three-Level converter to eliminate the oscillation and clamp the rectified voltage to the reflected input voltage, the proposed ZVS Three-Level converter can be simplified by removing the two freewheeling diodes.

  • PDF

Characteristic Estimation of Single-Stage Active-Clamp Type High Frequency Resonant Inverter (단일 전력단 능동 클램프형 고주파 공진 인버터의 특성 평가)

  • 원재선;강진욱;김동희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.114-122
    • /
    • 2004
  • This paper presents a novel single-stage active-clamp type high frequency resonant inverter. The proposed topology is integrated full-bridge boost rectifier as power factor corrector and active-clamp type high frequency resonant inverter into a single-stage. The input stage of the full-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. By adding additional active-clamp circuit to conventional class-E high frequency resonant inverter, main switch of inverter part operates not only at Zero-Voltage-Switching mode but also reduces the switching voltage stress of main switch. Simulation results have demonstrated the feasibility of the proposed high frequency resonant inverter. Characteristics values based on characteristics estimation through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in the fields of induction heating applications, fluorescent lamp and DC-DC converter etc.

A Novel Energy Recovery Circuit for AC PDPs with Reduced Sustain Voltage (새로운 유지구동전압 저감형 AC PDP용 에너지 회수회로)

  • Lim, Seung-Bum;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.494-501
    • /
    • 2006
  • In this paper, a novel energy recovery circuit for AC PDPs(Plasma Display Panels) with reduced sustain voltage is proposed to improve the performance of conventional circuits such as TERES(TEchnology of REciprocal Sustainer). In the TERES circuit, the sustain voltage is the half of general sustaining driver for AC PDPs, however, there is no energy recovery circuit. In the proposed circuit, the efficiency is heightened by installing in energy recovery circuit and the loss of switching device is reduced by performing the zero voltage switching or zero current switching. Although the energy recovery circuit is added, the number of active switching elements of the proposed circuit is the same as that of the TERES circuit. The operations of the proposed circuit are analyzed for each mode and its validity is verified by the simulations and experimentation.

3-Phase Single Stage AC-DC Converter for Small Wind Turbine System (소형풍력발전을 위한 3상 단일전력단 교류-직류 컨버터)

  • Yu-Jin Moon;Beom-Su Park;Sang-Kyu Kim;Eun-Soo Kim;Deok-Jin Lim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.68-75
    • /
    • 2023
  • This paper proposes a three-phase single-stage AC-DC converter for the small wind generation system. Input power factor improvement and insulated output can be implemented with the proposed three-phase single-stage AC-DC converter under the wide power generation voltage (80-260 Vac) and frequency (10-42 Hz) in a small wind power generation (WPG) system. The proposed converter is also capable of zero-voltage switching in the primary-side switches and zero-current switching in the secondary-side diodes by phase-shift control at a fixed switching frequency. In addition, it is possible to control a wide output voltage (Vo: 39 VDC-60 VDC) by varying the link voltage and improving the input power factor (PF) and the total harmonic distortion factor (THDi). Simulation and experimental results verified the validity of the proposed converter.

High Efficiency PFC AC/DC Converter with Synchronous Rectifier (동기 정류기를 이용한 고효율 역률보상형 AC/DC 컨버터)

  • 박한웅
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.266-269
    • /
    • 2000
  • This paper presents a novel single-stage unity power factor converter which features the reduced switching losses by zero-voltage switching and zero-current switching (ZVZCS). Hence the turn-on and turn-off losses of switches are sufficiently reduced. And the reduced conduction losses are achieved by the elimination of one leg of front-end rectifier. And low on-resistance MOSFETs (Synchronous Rectifier) are used in the rectifier at the secondary side of high frequency transformer instead of diodes. Theoretical analysis simulated results of a AC to DC 150W(5V, 30A) converter are presented.

  • PDF

ZERO - VOLTAGE - SWITCHED QUASI - RESONANT DC - DC CONVERTER WITH 1MHZ SWITCHING FREQUENCY (1MHZ 공진형 DC - DC 콘버터)

  • Lee, Y.J.;Kim, H.J.;Ahn, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.381-384
    • /
    • 1988
  • This paper analysed basic operation in Zero-voltages-switching quasi-resonant buck converter and considered steady state characteristics. Especially, it is confirmed that converter operating at maximum 1MHz switching frequency in load characteristics. In this paper, a novel slope method is proposed and implemented in regulation characteristics analysis. It is proved that experimenental results coincide with theory results.

  • PDF